REPORT

Superfund Records Center
SITE: SULLIVAND USDGE
BREAK: 7.2
OTHER: \$58070

Quarterly Ground Water Sampling Event Spring 2003

Sullivan's Ledge Superfund Site New Bedford, Massachusetts

June 2003

SDMS DocID

558079

REPORT

Quarterly Ground Water Sampling Event Spring 2003

Sullivan's Ledge Superfund Site New Bedford, Massachusetts

James R. Heckathorne, P.E. Vice President

June 2003

Contents

ii
ii
ii
1
1
1
3
3
3
3
4
4
4
5
6
6
6
7

List of Tables

- 1 Ground Water Data Summary (VOCs)
- 2 Ground Water Data Summary (PCBs)
- 3 Ground Water Data Summary from Recovery Systems (VOCs)
- 4 Ground Water Data Summary from Recovery Systems (PCBs)
- 5 Ground Water Data Summary from Recovery Systems (Metals)

List of Figures

- 1 Overburden Well Location Map
- 2 Shallow Bedrock Well Location Map
- 3 Intermediate Bedrock Well Location Map
- 4 Deep Bedrock Well Location Map

List of Appendices

- A Correspondence
- B Conventional Low-flow Ground Water Sampling Logs, Instrument Calibration Logs, Chain-of-Custodies, Ground Water Elevation Data Tables
- C Westbay Well Sampling Logs
- D Spring 2003 Data Validation Report

1. Introduction

1.1. Purpose and objective

The Spring 2003 quarterly ground water monitoring event was conducted at Operable Unit 1 of the Sullivan's Ledge Superfund Site from March 17 through March 20, 2003. Assisting O'Brien & Gere Engineers, Inc. (O'Brien & Gere) with this program were Mabbett & Associates, Inc. (M&A) and Alpha Analytical Labs (Alpha). M&A provided field sampling services and related consultation while Alpha provided analytical services. Sampling was conducted in accordance with the Final Field Sampling Plan (FSP) submitted to EPA and Metcalf & Eddy (M&E) in January 2000, as amended by M&A letters dated March 14 and March 16, 2001, an O'Brien & Gere letter dated February 11, 2002, and electronic mail from the Sullivan's Ledge Site Group dated March 22, 2002. Copies of the M&A and O'Brien & Gere letters and the Group's electronic mail are included in Appendix A.

The purpose of the quarterly monitoring report is to discuss the field work associated with the Spring 2003 quarterly sampling event, and to present data obtained during the sampling event. Upon completion of the Winter 2003 quarterly monitoring event, an annual report will be generated to provide information regarding the Winter 2003 monitoring event, and will include tables and figures and discussion relative to historical data trends.

1.2. Deviations from field sampling plan (FSP)

The following deviations from the FSP were made during the Spring 2003 quarterly sampling event in accordance with the February 11, 2002 approved plan for the Ground Water Monitoring Program:

- Ground water samples were obtained from eight conventional monitoring wells (Overburden wells MW-6A, MW-14 and MW-15, Shallow bedrock wells MW-2, MW-4, MW-6, MW-24 and GCA-1) and from ten ports from two Westbay wells (ECJ-1 and ECJ-2.) All samples were analyzed for select volatile organic compounds (VOCs) and six samples were analyzed for polychlorinated biphenyls (PCBs).
- In addition to collecting samples from monitoring wells, ground water samples were collected from the shallow collection trench and the six bedrock recovery wells from ports within the ground water

treatment plant. Samples were analyzed for select VOCs, PCBs, and eight select metals.

The following deviations from the FSP were also made during the Spring 2003 sampling event:

- Consistent with previous sampling events, the quantity of water sampled from each Westbay well sampling port for PCB analysis was decreased by one liter to streamline the sampling process.
- Turbidity at monitoring wells GCA-1, MW-2, MW-6A, MW-14, and MW-24 did not fall below the EPA guidance on low flow sampling criteria of 1 NTU. However, following purge times of 55, 40, 95, 70 and 110 minutes, respectively, the last three consecutive readings reported turbidity within 10%. Therefore, according to U.S EPA guidance, stabilization had been achieved and the wells could be sampled. With the exception of MW-24, stabilized turbidity values of less than 5 NTU were achieved, as has generally been observed in previous quarterly sampling events.
- Site-wide groundwater elevation data was not collected prior to the Spring 2003 sampling event because the groundwater treatment plant had not been operating continuously in the days leading up to the event. A complete round of groundwater elevation data was collected on March 25, 2003 following five days of continuous operation of the groundwater treatment facility. Water levels were also collected at Westbay and conventional wells during the sampling program as part of characterization associated with sampling, as indicated on the corresponding field log. The ground water elevation data is provided in Appendix B.

2. Summary of field activities and analytical results

2.1. Well locations

The locations of overburden, shallow bedrock, intermediate bedrock, and deep bedrock monitoring wells (including Westbay wells) are shown on Figures 1, 2, 3, and 4, respectively.

2.2. Qualitative well integrity testing

During the Spring 2003 sampling event, M&A observed individual wells prior to sample collection, and noted no changes from conditions observed in the integrity tests conducted during previous inspections.

2.3. Conventional ground water monitoring wells

A total of eight conventional ground water monitoring wells were purged and sampled in accordance with the FSP and the QAPP through the use of an EPA-approved low-flow bladder pump system dedicated to each well.

Prior to sampling, purged ground water was monitored in a flow-through cell on-site for the parameters described in Section 2.5 of the FSP. Equipment used to perform the characterization was calibrated and used in accordance with the standards and protocols provided in Section 3.6 of the QAPP.

Following purging, sampling of the conventional wells was completed using procedures described in Section 2.6 of the FSP. Sampling logs and instrument calibration logs are provided in Appendix B of this report.

Samples were packed on ice and sent to Alpha Analytical Labs under a chain-of-custody (COC) for twelve select VOCs and PCBs analyses by methods described in Section 2.1 of the FSP, as amended by the O'Brien & Gere letter dated February 11, 2002, included in Appendix A. Copies of the chain of custodies are included in Appendix B. Trip blanks were shipped with coolers submitted to the laboratory in accordance with Section 3.5 of the QAPP.

Quality Assurance/Quality Control (QA/QC) samples were also collected in accordance with Section 3.5 of the QAPP. MS/MSD samples were collected from bedrock well GCA-1 on March 19, 2003.

2.4. Westbay monitoring wells

Two Westbay bedrock wells (ECJ-1 and ECJ-2) were sampled during the Spring 2003 ground water sampling event. Westbay field sampling logs are provided in Appendix C.

Consistent with Section 2.6 of the FSP, ground water from the Westbay ports was directly sampled without prior purging or characterization. Samples collected from the Westbay bedrock wells were packed on ice and shipped under a COC to Alpha Analytical Labs for twelve select VOCs in accordance with the procedures outlined in Section 2.1 of the FSP, as amended by the O'Brien & Gere letter dated February 11, 2002, included in Appendix A. Trip blanks were shipped with coolers submitted to the laboratory in accordance with Section 3.5 of the QAPP.

QA/QC samples were also collected. Duplicate sample #1 was collected on March 17, 2003 from ECJ-2-47. An equipment blank from the Westbay sampling equipment was collected on March 17, 2003.

2.5. Ground water recovery samples

Samples were collected from the shallow collection trench and the six bedrock recovery wells using the installed taps in the ground water treatment plant.

QA/QC samples were also collected. Duplicate sample #2 was collected from recovery well BEI-2 on March 18, 2003. MS/MSD samples were collected from recovery well BEI-3 on March 18, 2003.

Samples were packed on ice and shipped under a COC to Alpha Analytical Labs for twelve select VOCs, PCBs, and eight select metal analyses.

2.6. Validated results

Validated data from the Spring 2003 sampling round is included in the data validation report provided in Appendix D. The validated data has been downloaded into a Microsoft FoxPro relational database management system (DBMS) to facilitate future data management and trend analysis.

2.7. Analytical results

Tables 1 and 2 present the range of detected constituents in the ground water monitoring wells for twelve select VOCs and PCBs, respectively. A review of the tables suggests the following:

- Of the twelve VOCs analyzed for, cis-1,2 dichloroethene and vinyl chloride are present at the highest concentrations. The highest levels of VOCs were found at ECJ-1 and ECJ-2.
- PCBs were detected infrequently during the Spring 2003 sampling event. The highest level of PCBs (Aroclor 1242/1016) in the monitoring wells was detected at MW-24. The elevated level of PCBs in MW-24 could be related to the elevated turbidity values during sampling.

Tables 3, 4, and 5 present the range of detected constituents at the shallow collection trench and six bedrock recovery wells for twelve select VOCs, PCBs, and eight select metals, respectively. A review of the tables suggests the following:

- Of the twelve VOCs analyzed for, cis-1,2 dichloroethene and trichloroethene are present at the highest concentrations. The highest levels of VOCs were found at BEI-1.
- PCBs were detected infrequently during the Spring 2003 sampling event. The highest level of PCBs (Aroclor 1254) was detected at OBG-1.
- Barium was detected in each sample ranging from 0.13 to 1.6 mg/L. Iron was also detected in each sample ranging from 2 to 84 mg/L. Lead was detected in five of the seven samples at concentrations up to 0.017 mg/L. Aluminum, chromium, and zinc were detected in one sample at 0.15 mg/L, 0.01 mg/L, and 0.3 mg/L, respectively. Copper and vanadium were not detected in any of the seven samples.

The 2003 annual monitoring report will include tables and contour maps showing VOC concentrations in the overburden and bedrock depth intervals, ground water flow maps, and a detailed discussion relative to historical trends in concentrations.

3. Summary, conclusions, and recommendations

3.1. Summary

A scope of quarterly ground water monitoring consistent with the 2002 sampling events was performed to establish a database for future evaluation of data trends. The more comprehensive annual sampling event will be conducted during in December 2003.

A total of eight conventional wells and ten ports from two Westbay wells were sampled during the Spring 2003 ground water sampling event. Analysis was conducted for twelve select VOCs (18 samples) and PCBs (6 samples). Samples were also collected from the shallow collection trench and the six bedrock recovery wells using sample taps in the ground water treatment plant. Analysis was conducted for twelve select VOCs (7 samples), PCBs (7 samples), and eight select metals (7 samples). Analytical results were validated and downloaded into a Microsoft FoxPro relational database management system to facilitate data management and trend analysis that will be addressed in the 2003 annual report.

3.2 Conclusions

Some conclusions that can be drawn based on the Spring 2003 data (presented in Appendix D) are as follows:

VOCs

Consistent with the previous sampling reports, the concentrations of VOCs in the ground water samples continue to fluctuate. The maximum concentration of each detected VOC was less than the maximum concentrations detected during the Winter 2002 sampling event with the exception of 1,4-dichlorobenzene, trichloroethene, and vinyl chloride. The increases in maximum detected concentrations of 1-4-dichlorobenzene and trichloroethene were slight (5 ppb at MW-2 and 100 ppb at MW-24, respectively.) The increase in the maximum concentration of vinyl chloride may be indicative that the VOCs are naturally attenuating by reductive dechlorination.

PCBs

A review of Tables 2 and 4 confirms that PCBs continue to be detected infrequently and at low concentrations, and only in wells that also show detections of VOCs.

Metals

The concentrations of metals in the shallow collection trench and the bedrock recovery wells continue to be consistent.

3.3 Recommendations

Consistent with the recommendations included in the Winter 2002 Annual Monitoring Report, the results of the quarterly monitoring events will continue to be evaluated to identify any trends in the data to evaluate future data collection needs and to identify any potential adjustments of the scope of future monitoring events to minimize collection of data that may not present any meaningful information. At this time, no adjustment to the June 2003 monitoring event is recommended.

Table 1
Sullivan's Ledge Superfund Site
Spring 2003 Monitoring Event
Ground Water Data Summary
Volatile Organic Compounds¹

Constituent	Number of Samples	Number of Detects	Range (µg/L)	
			Low	High
1,4-Dichlorobenzene	18	3	2.5U	50
Benzene	18	10	10U	2100
Chlorobenzene	18	8	5U	170
Ethylbenzene	18	9	0.5U	1700
Napthalene	18	3	2.5U	17
Toluene	18	8	1.9U	1900
Trichloroethene	18	3	0.5U	1100
Vinyl chloride	18	15	2.5U	23000
cis-1,2-Dichloroethene	18	15	1.2U	39000
o-Xylene	18	2	0.5U	2.3
m,p-Xylenes	18	3	0.5U	5.5
trans-1,2-Dichloroethene	18	1	0.75	8.9

^{1.} A total of 12 VOCs analyzed using method 8260B.

^{2.} U - Indicates that the compound was analyzed for, but was not detected.

Table 2 Sullivan's Ledge Superfund Site Spring 2003 Monitoring Event Ground Water Data Summary PCBs¹

Constituent	Number of Samples	Number of Detects	Range (µg/L)	
			Low	High
Aroclor 1242/1016	6	3	0.5 U	26.1

Notes

- 1. A total of 6 PCB compounds analyzed using method 8082B. Only detected compounds shown.
- 2. U Indicates that the compound was analyzed for, but was not detected.

Table 3 Sullivan's Ledge Superfund Site Spring 2003 Monitoring Event Ground Water Data Summary from Recovery Systems¹ Volatile Organic Compounds²

Constituent	Number of Samples	Number of Detects	Range (µg/L)	
			Low	High
1,4-Dichlorobenzene	7	1	2.5U	5.4
Benzene	7	5	100U	360
Chlorobenzene	7	5	250U	240
Ethylbenzene	7	6	25U	1300
Naphthalene	7	1	2.5U	12
Toluene	7	4	0.75U	990
Trichloroethene	7	5	0.5U	8400
Vinyl chloride	7	6	1U	1100
cis-1,2-Dichloroethene	7	7	1.7	22000
o-Xylene	7	, 1	0.5U	1
m,p-Xylenes	7	1	0.5U	2.8
trans-1,2-Dichlorethene	7	1	0.75U	19

Notes:

- Samples collected from shallow collection trench and bedrock recovery wells BEI-1, BEI-2, BEI-3, OBG-1, OBG-2 and OBG-3.
- 2. A total of 12 VOCs analyzed using method 8260B.

Table 4 Sullivan's Ledge Superfund Site Spring 2003 Monitoring Event Ground Water Data Summary from Recovery Systems¹ PCBs²

Constituent	Number of Samples	Number of Detects	Range (µg/L)	
			Low	High
Aroclor 1242/1016	7	5	0.5U	11.8
Aroclor 1254	7	6	0.5U	42.2

Notes

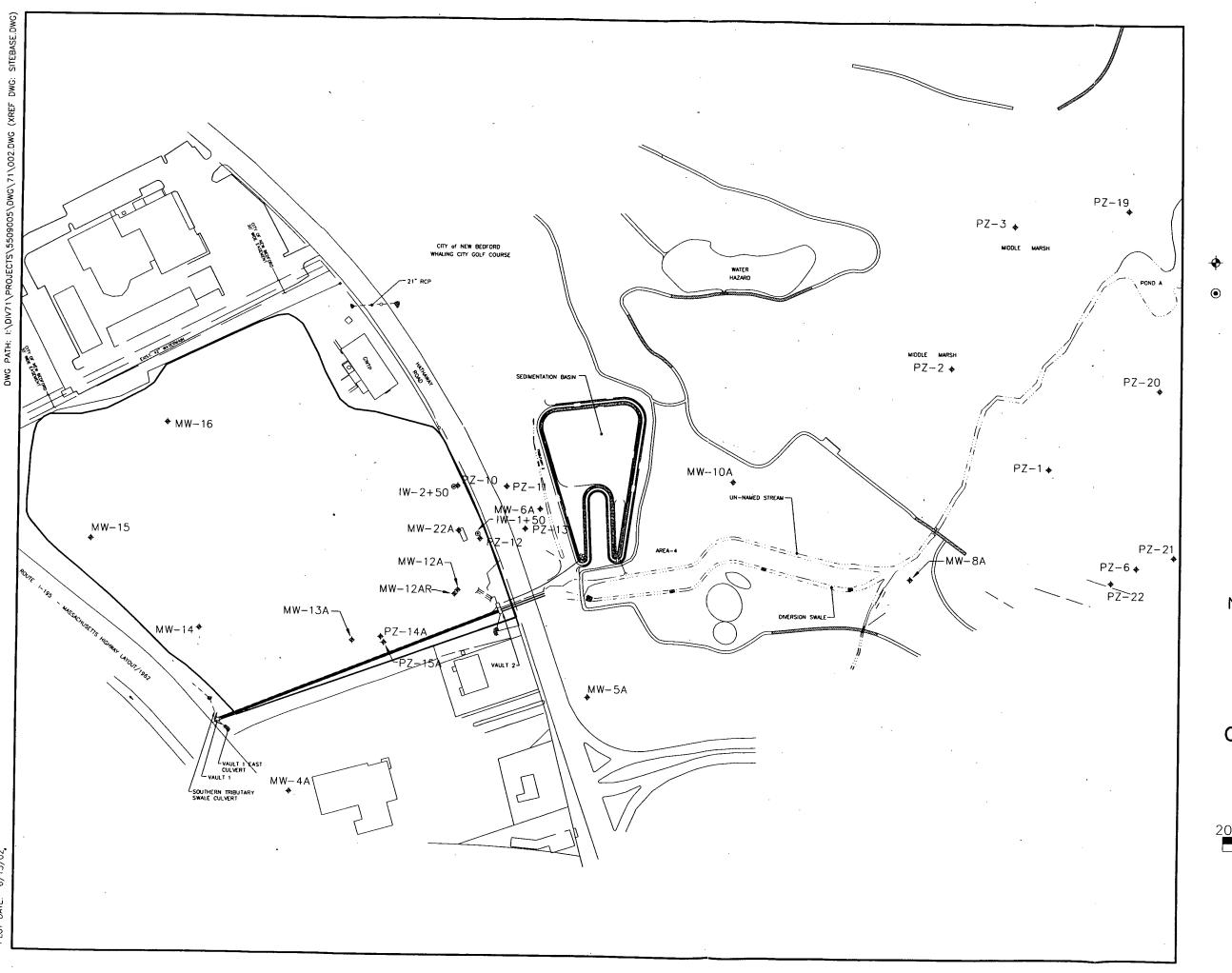
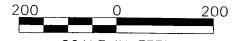

- Samples collected from shallow collection trench and bedrock recovery wells BEI-1, BEI-2, BEI-3. OBG-1, OBG-2, and OBG-3.
- 2. A total of 6 PCB compounds analyzed using method 8082B. Only detected compounds shown.

Table 5 Sullivan's Ledge Superfund Site Spring 2003 Monitoring Event Ground Water Data Summary from Recovery Systems¹ Metals²

Constituent	Number of Samples	Number of Detects	Range (mg/L)	
			Low	High
Aluminum	7	1	0.1U	0.15
Barium	7	7	0.13	1.6
Chromium (total)	7	1	0.01U	0.01
Copper	7	0	0.01U	0.01U
Iron	7	7	2.0	84
Lead	7	5	0.005U	0.017
Vanadium	7	0	0.01U	0.01U
Zinc	7	1	0.05U	0.3

Notes:

- Samples collected from shallow collection trench and bedrock recovery wells BEI-1, BEI-2, BEI-3, OBG-1, OBG-2, and OBG-3.
- 2. A total of 8 metal compounds analyzed using method 6010B/7470A. All analysis shown.
- 3. U Indicates that the compound was analyzed for, but was not detected.


<u>LEGEND</u>

- MONITORING WELL LOCATION
- RECOVERY WELL LOCATION

ELEVATIONS IN FEET RELATIVE TO MEAN SEA LEVEL

SULLIVAN'S LEDGE SUPERFUND SITE NEW BEDFORD, MASS.

OVERBURDEN WELL LOCATION MAP

SCALE IN FEET

FILE NO. 5509.005-002 AUGUST 2001

LEGEND

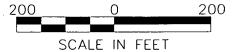
- ♦ MONITORING WELL LOCATION
- RECOVERY WELL LOCATION

ELEVATIONS IN FEET RELATIVE TO MEAN SEA LEVEL

SULLIVAN'S LEDGE SUPERFUND SITE NEW BEDFORD, MASS.

SHALLOW BEDROCK WELL LOCATION MAP

FILE NO. 5509.005-003 AUGUST 2001


LEGEND

- ECJ WELL LOCATION
- RECOVERY WELL LOCATION

ELEVATIONS IN FEET RELATIVE TO MEAN SEA LEVEL

SULLIVAN'S LEDGE SUPERFUND SITE NEW BEDFORD, MASS.

INTERMEDIATE BEDROCK WELL LOCATION MAP

FILE NO. 5509.005-004 AUGUST 2001

LEGEND

- ECJ WELL LOCATION
- RECOVERY WELL LOCATION

ELEVATIONS IN FEET RELATIVE TO MEAN SEA LEVEL

SULLIVAN'S LEDGE SUPERFUND SITE NEW BEDFORD, MASS.

DEEP BEDROCK WELL LOCATION MAP

FILE NO. 5509.005-005

AUGUST 2001

Appendix A

Correspondence

Mabbett & Associates, Inc.

March 14, 2001

Mr. David O. Lederer
Remedial Project Manager
Environmental Protection Agency (HBO)
Region 1
1 Congress Street, Suite 1100
Boston, MA 02114-2023

Re:

Sullivan's Ledge Superfund Site

Spring 2001 Groundwater Sampling Event

O'Brien & Gere Engineers, Inc.

Syracuse, NY

Project No. 20015.01

Dear Dave:

On behalf of O'Brien & Gere Engineers, Inc., this letter presents clarifications and modifications to the January 2000 Field Sampling Plan for the Spring 2001 groundwater sampling event at the Sullivan's Ledge Superfund Site, and is consistent with my e-mail to you dated February 26, 2001.

Schedule: The Spring 2001 sampling event is scheduled for the weeks of March 19 and March 26, 2001, consistent with O'Brien & Gere's letter to EPA dated June 26, 2000.

Analytical Scope: The analytical scope for the Spring 2001 round will consist of an annual round. Samples from conventional wells and Westbay well ports will be analyzed for VOCs, PCBs, SVOCs, and metals. The scope of the metals analysis will be increased from RCRA 8 metals to TAL metals. The modifications to the program recommended in O'Brien & Gere's June 26, 2000 letter will not be implemented.

<u>Filtering of Samples for Metals:</u> Samples will be collected for total metals analysis only. As we discussed, this approach is consistent with Massachusetts Contingency Plan Guidance. (See MCP Master Q&A 1993-1997 #Q164 "Water to be collected from a tap should not be filtered, nor should water collected with a low flow sampling pump that is designed to minimize turbidity...").

<u>Laboratory:</u> Laboratory analysis for the project will be completed by Alpha Analytical, Inc. (Alpha). On March 12, 2001, O'Brien & Gere forwarded to EPA Alpha's Laboratory Quality Assurance Manual, and a letter from Alpha dated March 7, 2001 which summarizes laboratory reporting limits and standard laboratory control limits.

ECJ-3: ECJ-3 is the upgradient Westbay well. This well was found plugged during the 1999/2000 sampling event. HLA has indicated that it has removed the blockages, but was unable to remove a 50-ft rod which had been used for clearing from the lower portion of the well (approximately 210 ft from top of casing). At a minimum, the rod will preclude sampling the lower two ports of the well. HLA has been requested to videotape the well, to evaluate well integrity and the potential for getting Westbay sampling equipment hung up in the well. Based on the above, ECJ-3 will not be sampled until the well is videotaped and found to be suitable for sampling. We will keep you apprised of the situation.

© 2001, Mabbett & Associates, Inc.

J:\USERS\ADMINA\20015\LEDERER-07.DOC

5 Alfred Circle

01730-2346 Tet: (781) 275-6050 Fax: (781) 275-5651

info@mabbett.com www.mabbett.com

Bedford, Massachusetts

Mr. David O. Lederer March 14, 2001 Page 2 of 2

<u>Project Organization:</u> Samples will be collected by Mabbett & Associates, Inc. The overall project organization will be as follows:

Title	Name	Firm
Project Coordinator:	James R. Heckathorne, PE	OBG
Project Manager:	James M. O'Loughlin, PE, LSP	M&A
Project Hydrogeologist:	Guy A. Swenson, CPG	OBG
Data Validator:	Melissa S. Listman	OBG
Site Manager:	Melissa A. Smith	M&A
Health & Safety Officer:	Gregory C. Guimond	M&A
Sampling Personnel:	Melissa A. Smith	M&A
Sampling Personner.	Gregory C. Guimond	M&A
•	Darren J. Andrews	M&A
	Ryan E. Hill	M&A
	Theodore A. Nawn	M&A

We appreciated the opportunity to discuss the program with you on March 1, 2001, and look forward to completing it. Please contact Jim Heckathorne or me if we can provide any additional information.

Very truly yours,

MABBETT & ASSOCIATES, INC.

BY:

James M. O'Loughlin, P.E., LSP

Senior Project Manager

JMO/tw

cc: S. Wood

D. Allen

R. Carey

J. Johnson

J. Heckathorne

E. Bertaut

D. Buckley

M. Wade

M. Listman

R. Connors

D. Dwight

G. Swenson

DJA, GCG, REH, JMO, TAN, MAS, (MF/RF)

df:

JEB, DAC, ANM, PDS

Environmental Consultants & Engi

March 16, 2001

5 Alfred Circle Bedford, Massachusetts 01730-2346 Tet: (781) 275-6050 Fax: (781) 275-5651 info@mabbett.com www.mabbett.com

Mr. David O. Lederer Remedial Project Manager Environmental Protection Agency (HBO) Region 1 1 Congress Street, Suite 1100 Boston, MA 02114-2023

Re: Sullivan's Ledge Superfund Site Health and Safety Plan O'Brien & Gere Engineers, Inc. Syracuse, NY Project No. 20015.01

Dear Dave:

To complete the groundwater, landfill gas, and surface water/sediment sampling at Sullivan's Ledge, Mabbett & Associates, Inc. will be adopting the Health & Safety Plan developed by O'Brien & Gere for that purpose (provided to EPA on July 30, 1999). This plan was reviewed by M&A and found to be acceptable, subject to the following updates and clarifications:

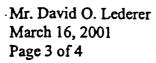
Project Organization (Update to Section 1.4 and Table 1.1)

Title	Name	Telephone
Project Management Committee	Steven B. Wood	401-421-0398
Project Coordinator	James R. Heckathorne, PE	315-437-6100
Project Manager	James M. O'Loughlin, PE	781-275-6050
Technical Director of Environmental Health*	Ronald S. Ratney, Ph.D, CIH	781-275-6050
Site Health and Safety Coordinator	Gregory C. Guimond	781-275-6050
Field Team Leader	Melissa A. Smith	781-275-6050
Field Team Member	Darren J. Andrews	781-275-6050
Field Team Leader	Ryan E. Hill	781-275-6050
Field Team Member	Theodore A. Nawn	781-275-6050

Will assume duties delineated for Associate for Health and Safety

Mr. David O. Lederer March 16, 2001 Page 2 of 4

Protective Equipment (Modification to Sections 2.2 and 4.2)


Gloves: Nitrile inner gloves will be used in place of latex inner gloves.

Boots: For Level D, Modified Level D, and Modified Level C, footwear will consist of leather steel toe boots with rubber overboots. Because site soils have been remediated, and due to the slip hazard associated with mud and snow, disposable outerboots (i.e., tyvek booties) will not be worn.

Respirators: If the during groundwater sampling the concentration of VOCs in the breathing zone is 25 parts per million (ppm) above background, as measured by a PID, the well will be capped and the Project Manager will be contacted before upgrading to full face air purifying respirators with organic vapor cartridges.

Emergency Telephone Numbers (Update to Table 9-1)

Agency	Phone
Ambulance	911
St Lukes Hospital (General)	(508) 997-1515
St Lukes Hospital (Emergency Room)	(508) 961-5388
New Bedford Fire Department	(508) 991-6100
New Bedford Police Department	(508) 991-6340
New Bedford Public Works Department (Robert Carey, City Project Coordinator) Sullivan's Ledge Groundwater Treatment Plant	(508) 979-1527 (508) 961-3160
U.S. Environmental Protection Agency (David Lederer, USEPA Project Manager)	(617) 918-1325
Massachusetts Department of Environmental Protection (Dorothy Allen, MADEP Project Manager)	(617) 292-5795
State Poison Center	(800) 682-9211
State Police	(617) 523-1212
State Emergency Response	(888) 304-1133
National Emergency Response	(800) 424-8802
Mabbett & Associates, Inc.	(800) 877-6050

Map to Hospital (Update to Figure 9-1)

An updated map to St Luke's hospital is attached.

Personal Training (Modification to Section 3.2)

Replace text in Section 3.2 with the following:

On-site management and supervisors directly responsible for or who supervise employees engaged in hazardous waste operations must have completed 40 hours of initial training, three days of supervised field experience, and at least 8 additional hours of specialized training.

Medical Surveillance Program (Modification to Section 5.1)

Replace text in Section 5.1 with the following:

All employees who are or may be exposed to hazardous substances or health hazards at or above the established permissible exposure limit, above the published exposure levels for these substances, without regard to the use of respirators, for 30 days or more a year; who wear a respirator for 30 days or more a year; or are injured, become ill or develop signs or symptoms due to possible overexposure involving hazardous substances or health hazards from an emergency response or hazardous waste operation are subject to the medical surveillance requirements outlined herein.

Medical examinations and consultations shall be made available by the employer to each employee prior to assignment; at least once every twelve months for each employee covered unless the attending physician believes a longer interval (not greater than biennially) is appropriate; at termination of employment or reassignment to an area where the employee would not be covered if the employee has not had an examination within the last six months; as soon as possible upon notification by an employee that the employee has developed signs or symptoms indicating possible overexposure to hazardous substances or health hazards, or that the employee has been injured or exposed above the permissible exposure limits or published exposure levels in an emergency situation; or at more frequent times, if the examining physician determines that an increased frequency of examination is medically necessary.

For employees who may have been injured, received a health impairment, developed signs or symptoms which may have resulted from exposure to hazardous substances resulting from an emergency incident, or exposed during an emergency incident to hazardous substances at concentrations above the permissible exposure limits or the published exposure levels without the necessary personal protective equipment being used, medical examinations and consultations shall be made available as soon as possible following the emergency incident or development of signs or symptoms and at additional times, if the examining physician determines that follow-up examinations or consultations are medically necessary.

Please contact the undersigned if you have any comments or if we can provide any further information.

Mr. David O. Lederer March 16, 2001 Page 4 of 4

Very truly yours,

MABBETT & ASSOCIATES, INC.

BY:

James M. O'Loughlin, P.E., LSP Senior Project Manager

JMO/tw

cc:

S. Wood

D. Allen

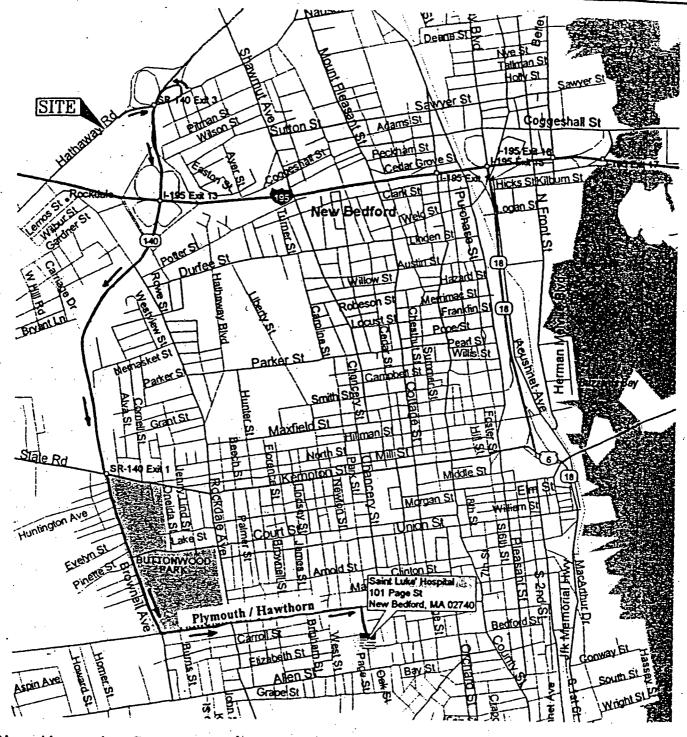
ams m D'L oughlin

R. Carey

J. Heckathorne

E. Bertaut

D. Buckley


R. Connors

D. Dwight

DJA, GCG, REH, JMO, TAN, RSR, MAS, (MF/RF)

df: J

JEB, DAC, ANM, PDS

Directions to Saint Luke's Hospital, 101 Page Street, New Bedford, Ma.

Take Route 140 south. Continue straight onto Brownall Avenue, at the 140/Route 6 intersection. Turn left after Buttonwood Park, onto Plymouth. Follow Plymouth for approximately 0.9 miles to Page Street. Turn right onto Page St., and travel 1 1/2 blocks to Saint Luke's Hospital (on your right). The route described also has signs to assist in locating Saint Luke's Hospital.

SULLIVAN'S LEDGE NEW BEDFORD, MASSACHUSETTS	SAINT LUKE'S HOSPITAL DIRECTION MAP	
	SCALE: AS NOTED	DR BY: DJA
Mabbett & Associates, Inc.	DATE: 3/15/21	AP BY: JMO

DWG NO.

M-1

PROJ NO.
20015.07

February 11, 2002

VIA OVERNIGHT DELIVERY

Mr. David O. Lederer Remedial Project Manager Environmental Protection Agency (HBO) Region 1 1 Congress Street, Suite 1100 Boston, MA 02114-2023

Re: Sullivan's Ledge Superfund Site

2002 Ground Water Monitoring Program

File: 5509.005 #2

Dear Dave:

On behalf of the Sullivan's Ledge Site Group, and consistent with past discussions, O'Brien & Gere is submitting the following proposed sampling plan for the 2002 Groundwater Monitoring Program at the Sullivan's Ledge Superfund Site, which represents a revision of the 2001 program, and is based upon a review of the data from the 2001 program and the substantial data from past groundwater sampling programs at the site.

Paragraph V.C.2.of the Statement of Work (SOW) describes requirements for compliance groundwater monitoring. A baseline round of groundwater monitoring was conducted at the site in the winter of 1999 / 2000, to coincide with the start-up of the groundwater treatment plant. Rounds of groundwater sampling were also conducted in Spring 2001, Summer 2001, Fall 2001, and Winter 2001. Based on these and previous rounds of sampling, as well as data obtained during groundwater treatment plant start-up and operation, O'Brien & Gere is writing this letter to propose a revised groundwater sampling plan for three quarterly events beginning in March 2002 and the annual sampling event. This request is consistent with Paragraph V.C.2.h of the SOW, which states:

"On its own initiative or at the request of Settling Defendants, EPA, in consultation with DEP, may add or delete specific parameters, monitoring wells, or zones and may adjust monitoring frequencies and requirements for water level measurements, depending on sample results and observed trends."

The proposed plan and rationale are presented in Attachment A. Elements of the proposed plan were discussed with EPA on May 12, 2000 and June 17, 2001, and have been presented in letters dated June 26, 2000 and May 18, 2001. In general, during the annual sampling event, 43 monitoring wells and 7 recovery points will be sampled for VOCs, PCBS, and 8 metals of environmental significance. In addition, during the annual sampling event, a composite influent sample to the GWTP will be sampled for SVOCs. During the quarterly events, a total of 17 monitoring wells and 7 recovery points will sampled. The monitoring wells will be sampled for VOCs (24 locations) and PCBs (5 locations). The 7 recovery points will be sampled for VOCs, PCBs, and 8 metals of environmental significance.

Mr. David O. Lederer February 11, 2002 Page 2

The following schedule is proposed for the program:

Quarterly Event **Quarterly Event** March 11 - 22, 2002June 10 - 21,2002

Quarterly Event

September 9 - 20, 2002

Annual Event

December 2 - 13,2002

The events generally coincide with a quarterly schedule, with some allowance for holidays and winter. The annual event is scheduled for winter, consistent with the 1999 / 2000 baseline sampling event and the Winter 2001 sampling event, to facilitate historical comparisons.

Please contact me if you have any questions concerning this letter.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC

James R. Heckathorne, PE Vice President

I:\DIV71\Projects\5509005\2_correspondence\LEDER06.doc Attachment

cc:

S. Wood

E. Vaughan

J. O'Loughlin

E. Bertaut

D. Dwight

G. Swenson

R. Connors

Sullivan's Ledge Superfund Site 2002 Groundwater Sampling Program Attachment A

I. MONITORING WELLS

A. 2002 Annual Sampling Event

1. Overview

Table 1 presents monitoring wells and recovery systems to be sampled during the 2002 annual sampling event. The locations of these monitoring wells and recovery systems are shown on Figure 1. The program is discussed in greater detail below.

2. Overburden Monitoring Wells

As shown on Table 1, and consistent with the Statement of Work (SOW), all overburden monitoring wells will be sampled during the annual sampling event.

3. Bedrock Monitoring Wells

As shown on Table 1, and consistent with the Statement of Work (SOW), all bedrock monitoring wells will be sampled during the annual sampling event.

4. Westbay Multi-port Bedrock Monitoring Wells

As shown on Table 1, and consistent with the Statement of Work (SOW), all Westbay monitoring ports will be sampled during the annual sampling event.

5. Recovery Systems

As shown on Table 1, the six bedrock recovery wells and the shallow collection trench will be sampled during the annual sampling event.

6. Summary

Consistent with the Statement of Work, a total of 43 monitoring wells and 7 recovery points will be sampled during the 2002 annual sampling event.

B. 2002 Quarterly Sampling Events

1. Overview

Table 2 presents monitoring wells and recovery systems to be sampled during the 2002 quarterly sampling events. The locations of these monitoring wells and recovery systems are shown on Figure 2. The program is discussed in greater detail below.

2. Overburden Monitoring Wells

The SOW indicates that after the first four consecutive quarters, sampling of overburden monitoring wells shall be conducted annually. Although not required by the SOW, it is proposed that MW-6A, MW-14, and MW-15 be sampled during the quarterly events in 2002. As shown on Figure 2, MW-6A is immediately across Hathaway Road from the Disposal

Sullivan's Ledge Superfund Site 2002 Groundwater Sampling Program Attachment A

3. Metals

As shown on Table 1, and consistent with the SOW, during the annual program, all overburden wells, bedrock wells, Westbay wells, and recovery points will be analyzed for metals. Paragraph II.C.4, below, describes proposed analytical methods as well as the 8 metals proposed for analysis.

4. SVOCs

As described in Section V.C.2. of the 1990 SOW, ground water sampling for Semi-Volatile Organic Compounds (SVOCs) is to be performed annually in overburden wells and bedrock wells after the first year. However, data collected since 1990 indicates that this approach is overly conservative and will result in the generation of data that has little use. Specifically:

- As discussed in the EPA-approved Preliminary Design Report, SVOCs have historically been detected in site ground water infrequently and in relatively low concentrations. From 1985 to 1993, fifty-one wells were sampled for SVOCs on multiple occasions, and of those wells sampled, results indicated that only five compounds were detected above CLP contract required quantitation limits (CRQLs) in more than 5% of the samples. Also, SVOCs were detected in areas where locally higher VOC concentrations were detected.
- Results for SVOCs from the 1999 / 2000 baseline sampling event and the Spring 2001 sampling event are consistent with the results from previous rounds of sampling. As shown in Table 4, SVOCs from the 1999 / 2000 baseline sampling event and Spring 2001 sampling event continue to make-up only a small fraction of the total organic compound concentrations detected in monitoring wells.
- The six bedrock recovery wells and the shallow groundwater collection trench were sampled for SVOCs twice during GWTP start-up, and twice during post start-up operation, as shown on Table 5. Data from the four rounds of GWTP influent monitoring indicate a total SVOC concentration ranging from non-detect to 371 ug/L, well below New Bedford pretreatment standards. As shown on Table 5, SVOCs make up a small fraction of the total organic loading to the GWTP. The concentrations of SVOCs at the recovery points have also been remarkably consistent over time.
- As shown on Table 6, sample results for SVOCs in the effluent from the GWTP between the period December 1999 and December 2001 have been non-detect for 20 of the 36 samples collected. Fifteen of the sixteen detections ranged from 0.001 mg/l to 0.033 mg/l, and averaged 0.013 mg/l, and were at least two orders of magnitude below the Total Toxic Organic (TTO) discharge limitation of 2.0 mg/l. Even the anomalously high result of 0.150 mg/l in March 2001 was over an order of magnitude below the TTO discharge limitation of 2.0 mg/L.

Although analysis for SVOCs is not proposed for samples from monitoring wells, as a conservative approach, a composite influent sample at the GWTP will be analyzed for SVOCs during the 2002 annual event. As shown on Table 5, the concentrations of total SVOCs in the seven individual sources do not vary significantly, ranging from ND-13.1

Sullivan's Ledge Superfund Site 2002 Groundwater Sampling Program Attachment A

ug/l in BEI-3, to ND - 73 ug/l in the shallow collection trench, to 26 - 371 ug/l in OBG-2. A composite sample will provide adequate data to confirm that SVOCs make up a small fraction of the organic loading to the groundwater treatment plant. Paragraph II.C.5, below, describes proposed the proposed method to be used for SVOC analysis.

5. Summary

During the 2002 annual sampling event, and consistent with the SOW, groundwater samples from 43 monitoring points and 7 recovery points will be analyzed for VOCs, PCBs, and metals. In addition, a composite influent sample at the GWTP will be analyzed for SVOCs during the annual event.

B. Quarterly Program

1. VOCs

As shown on Table 2, all overburden wells, bedrock wells, Westbay wells, and recovery points selected for sampling will be sampled for VOCs during the quarterly events. Paragraph II.C.2, below, describes the proposed analytical method and constituents to be reported.

2. PCBs

As shown on Table 2, all recovery points will be sampled for PCBs during the annual events. In addition, during the quarterly events, the following overburden and bedrock wells will be sampled for PCBs: MW-14, MW-15, MW-24, MW-2, and MW-6A. As shown on Table 3, these are the only wells on the site periphery which exhibited detections of PCBs during the 1999 baseline sampling event or the four consecutive quarterly rounds conducted in 2001. Paragraph II.C.3, below, describes the proposed method to be used for PCB analysis.

As shown on Table 2, a several wells on the Disposal Area, which will be sampled for VOCs during the quarterly events, are not proposed for PCB analysis. These wells include GCA-1 and ECJ-1. Examination of Table 3 indicates that for a collective total of 32 samples from these wells over the last 5 sampling events, 20 have been non-detect for PCBs. As shown on Table 3, when detected, the concentrations of PCBs in these wells are typically many orders of magnitude lower than the concentration of VOCs. Moreover, when detected in these wells, PCB concentrations have been remarkably consistent (e.g., GCA-1, ECJ-1 (37)). As shown on Figure 1, GCA-1 and ECJ-1 are all on the Disposal Area, and up-gradient of groundwater recovery equipment. These wells are proposed for quarterly monitoring for VOCs and annual monitoring for PCBs. Repeated sampling of these wells for PCBs during the quarterly events will provide data of little or no value.

Similarly, as shown on Table 2, several wells outside the Disposal Area, which will be sampled for VOCs during the quarterly events, are not proposed for PCB analysis. These wells include MW-6 and ECJ-2. Since the baseline round in 1999, there have been a collective total of 27 samples from these wells – and PCBs have not been detected. These wells are proposed for quarterly monitoring for VOCs and annual monitoring for PCBs. Repeated sampling of these wells for PCBs during the quarterly events will provide data of little or no value.

Sullivan's Ledge Superfund Site 2002 Groundwater Sampling Program Attachment A

3. Metals

As shown on Table 2, all recovery points will be sampled for metals during the quarterly events. Paragraph II.C.4, below, describes proposed analytical methods as well as the 8 metals proposed for analysis. Consistent with the SOW, overburden wells, bedrock wells, and Westbay wells will not be sampled for metals during the quarterly events.

4. SVOCs

Consistent with the SOW, overburden wells, bedrock wells, and Westbay wells will not be sampled for SVOCs during the quarterly events.

5. Summary

Consistent with the SOW, samples from all of the monitoring wells sampled during the quarterly events will be analyzed for VOCs. A total of 17 monitoring wells will be sampled. In addition, samples from 5 monitoring wells on the site periphery which have exhibited detections of PCBs will be analyzed for PCBs during the quarterly events. Finally, samples from 7 recovery points will be analyzed for VOCs, PCBs, and 8 metals during the quarterly events.

C. Analytical Methods and Parameters

1. Overview

The same analytical methods for VOCs, PCBs, metals, and SVOCs are proposed for the 2002 groundwater sampling program as were used during the 2001 program. However, in an effort to streamline data validation and management, it is proposed that the laboratory analyze for and report the results of all method 8260 B compounds, but that only the 13 compounds that have been detected at the site with a reasonable degree of consistency and frequency be validated and presented in the reports. Similarly, it is also proposed that analysis for metals be reduced from the full suite of 23 TAL metals to 8 metals of potential environmental significance that have been detected at the site with a reasonable degree of consistency and frequency. Details concerning the proposed analytical program are presented below.

Sullivan's Ledge Superfund Site 2002 Groundwater Sampling Program Attachment A

2. VOCs

Consistent with the 2001 groundwater sampling program, VOCs will be analyzed by method 8260B. However, as discussed above, based on historical data as well as the results from the 1999 / 2000 baseline round and the four consecutive quarters of data in 2001, it is proposed that the list of VOCs to be validated and presented in the reports be limited to those constituents that have been frequently and consistently observed on-site. Specifically, it is proposed that the following constituents be validated and presented:

trichloroethene^{(1) (2)}
1,2 dichloroethene (cis)^{(1) (2)}
1,2 dichloroethene (trans)^{(1) (2)}
1,2 dichloroethene (trans)^{(1) (2)}
vinyl chloride^{(1) (2)}
chlorobenzene⁽¹⁾

benzene^{(1) (2)}
toluene⁽¹⁾
ethyl benzene
vinyl chloride^{(1) (2)}
xylene (meta)⁽¹⁾
xylene (para)⁽¹⁾

xylene (ortho)⁽¹⁾
1,4 dichlorobenzene
naphthalene

The basis for this list and an explanation of the superscripted notes are presented below.

As shown on Tables 7-1, 7-2, 7-3, and 7-4, the VOCs listed in the first two columns were the only VOCs detected in more than 10% of the samples during any one of the four sampling events. Three other constituents (ortho-xylene, naphthalene, and 1,4 dichloro-benzene) were detected in just under 10% of the samples, and are included with the list as a conservative approach. As shown on Tables 8-1, 8-2, and 8-3, the above constituents have also been the more frequently detected constituents in the influent samples from the groundwater treatment plant.

It should be noted that the above list is more comprehensive than the list of VOC compounds selected as indicator parameters in the 1993 Ground Water Trend Analysis Report (i.e., benzene, toluene, xylene, chlorobenzene, tricholoethene, 1,2 dichloroethene, and vinyl chloride). These compounds are designated by note (1) in the table above. The remedial design was based on this small subset of indicator parameters. It is should also be noted that the 1989 RI Report indicated that an even smaller subset of constituents (i.e., vinyl chloride, trichloroethylene, 1,2-dichloroethene, benzene, and PCBs) represent over 99 percent of the total carcinogenic or non-carcinogenic baseline risks to human health associated with groundwater. These compounds are designated by note (2) above.

A total of 74 VOC compounds were validated and presented in the reports in 2001. Tables 7-1, 7-2, 7-3, and 7-4 indicate that no more than 27 VOC compounds were detected at over 40 monitoring wells during the four consecutive rounds of sampling conducted in 2001. To continuously validate, present, and manage data pertaining to approximately 47 compounds which have never been detected, and another 14 which are only detected in no more than 7% of the samples, is an inappropriate use of resources. The focused approach presented above will provide data which is just as meaningful for site management purposes, and which is much easier to comprehend and use.

3. PCBs

Consistent with the 2001 groundwater sampling program, PCBs will be analyzed by method 8082.

Sullivan's Ledge Superfund Site 2002 Groundwater Sampling Program Attachment A

treatment plant start-up, and the concentration of metals in the influent have consistently been well below City of New Bedford pretreatment requirements.

5. SVOCs

Consistent with the 2001 groundwater sampling program, SVOCs will be analyzed by method 8270C.

Table 2 Sullivan's Ledge Superfund Site 2002 Groundwater Sampling Program Quarterly Events (1)

Sampling Point	Set	<u> </u>	Anal		
		VOCs ¹²		Metals (9)	SVOC
Overburden Monito		- Inside Dispo	sal Area		
MW-12A	A				1
MW-13A	<u> </u>				
MW-22A MW-14		 			
MW-14 MW-15	В	X	X	 	
MW-15	B ·	. Х	X	 	
		Out-I 1 Di			
Overburden Monito		- Outside Dis	posal Area	· · · · ·	·
MW-05A	<u> </u>	-			
MW-06A	C	- x		<u> </u>	
MW-08A	. D		X	 	
MW-10A	6				
Bedrock Monitoring	Wells - In	ida Dienosai	Arna		
GCA-1	A	X X	AJ GA		
MW-13	Â	 ^-		 	
MW-17	· À	1	 -	 	+
MW-24	В	- x -	X	 	+
MW-02	В	X		 	+
Bedrock Monitoring	Wells - Ou	rtside Dispos	al Area		
MW-04	С	1		·	-
MW-05	C			 	
MW-06	C	X		 	
80-WM	D	_L		1	+
MW-10	D				
MW-108					
Westbay Multiport B			S		
ECJ 1 - 37	A	X			T
ECJ 1-62	A	X		I	
ECJ 1 - 72		X			
ECJ 1 - 122	A	X	_		
ECJ 1 -148 ECJ 1 - 267	 ^-	X			
ECJ 2 - 47	Č.	 		 	
ECJ 2 - 82	c	X			
ECJ 2 - 117	C	 	- 		
ECJ 2-152		 		 	
ECJ 2 - 187	 č	 		 	
ECJ 3 - 51	В	 			
ECJ 3 - 91	В				
ECJ 3 - 126	В		<u> </u>		
ECJ 3 - 146	В				t
ECJ 4-62	D				
ECJ 4 - 87	D				
ECJ 4 - 132	D			<u>. </u>	
ECJ 4 - 162	D	<u> </u>			
ECJ 4 - 227 ECJ 4 - 245	D	 			
		<u> </u>			
roundwater Recove	ery System				
hallow Collection Trench		X	X	X	
adrack Danners Make #-		 			
edrock Recovery Wells BEI - 1		 			
BEJ-2		X	X	X	
BEJ-2		 	- 	X	ļ
OBG - 1		 	 • • • 	X	
OBG - 2		 	 		
OBG - 3	· · ·		 	X	
		 	 ^ 	^_	
WTP Composite			- 		
ummary		T :			
otal Samples		24	12	7	0
AVQC		27	1 1	- 1 -	8
uplicate		2			8
IS		1 - 1 -		i	- 6
SD		1	1 1	i	
otal		30	16	11	0
nalytical Methods					
OCs SW5030/SW8260B		Total Metals	SW/3010/6010B	77470A	
CBs SW3520/SW8082		SVOCs	SW3520/SW827	'0C	

- (2) = TCE, 1,2-DCE (cis and trans), vinyl chloride, chlorobertzene, benzene, toluene, ethyl benzene, xylene (o,m,p), 1,4-dichlorobenzene, and napthalene.
 (3) = Aluminum, barium, chromium, copper, iron, lead, vanadium, and zinc

Prepared by Mabbett & Associates, Inc. for O'Brien & Gere Engineers, Inc.

From:

"Steve Wood" <swood@essgroup.com>

To:

"Dave Lederer (E-mail)" <LEDERER.DAVE@epamail.epa.gov>, "Evelina Vaughn

(E-mail)" <evelina.vaughn@state.ma.us>

Date:

3/22/02 2:22PM

Subject:

First quarter 2002 GW sampling

Dave - This e-mail is to acknowledge receipt of M&E comments you forwarded with your letter of March 10, 2002 and comments from DEP on the first quarter 2002 ground water sampling round. We have reviewed the comments and note that most pertain to the annual round of sampling which we will address at a later date, as they do not effect this quarterly round. We will modify the sampling plan to add MW-4 as suggested by DEP and analyze for the selected VOCs. With respect to sampling for select VOC's and 8 metals in this round, we note the comments and agree that sampling for total VOC's during the annual round has some merit. However, we do not agree that it is necessary to sample all 23 metals and all VOC's during this quarterly round.

Therefore, we plan to go forward with the sampling program as proposed, with the addition of MW-4

Sampling was originally scheduled for the week of March 11, 2002 but was delayed to allow us time to review the comments. We have rescheduled the sampling to begin on March 26, 2002 and it should continue through the week and possibly continued on the following Monday.

Please feel free to call if you have any comments or questions.

Steve

Steve Wood Senior Project Manager Environmental Science Services, Inc. (401) 421-0398 ext. 130 (401) 421-5731 Fax (401) 374-0515 Mobile swood@essgroup.com

CC:

"Jim Heckathorne (E-mail)" <HeckatJR@obg.com>

Conventional Low-flow Ground Water Sampling Logs, Instrument Calibration Logs, Chain-of-Custodies, Ground Water Elevation Data Tables

	,			Low	Flow Grou	nd Makes C		
Date	3 19 03	Per	sonnel	CLY	1 JAD		ampling Lo	
Site Name	Sullivans	redge Eva	cuation Metho	. 51.	don Auna	Weather ✔ Well #	Sunny	<u>- 40's</u>
Site Location	New Brd	San	npling Method	han	ANT MAL	r	GCA-1	
Well inform	ation:				TWW	Project #	2000016	.009
Depth of We		ft.		* 14				
Depth to Wal	ter • 3	·72 n.		Measu	rements taken from	_		
Length of Wa	iter Column	ft.				Top of Well Ca Top of Protective		
						Other, Specify	e Casing	
Water param	neters: Lower submer	sible pump slowly	through stage	ant unter selum				
	Position pump	in center of scree	ned interval &	maximum pump	ing rate of 0.5 liter	s/minute		
γ	Collect reading	s at every three m	inute intervals	3	or old life	Similate.	•	
Elapsed	Depth				Oxidation	Dissolved		
Time	To Water	Tamana	1		Reduction	Oxygen	Turbidity	Flow
<u> </u>	13-75	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (mi/min).
<u> </u>	1277	10.98	6.03	1576	-142.0	1.14	4.51	175
7	13.45	10.81	5-94	1553	-145.6	0.67	0.74	175
19	13.75	10.85	5.91	1520	-146.3	0.57	0,95	175
12	13.78/	10.85	5.89	1516	-146.9	0.49	INI	
20	13.74	10.88	5.88	1506	-148-8	0.42	1.7	175
25	13.78	16 91	5.15	1508	-148.8	0.41	1.69	
30	[3-78	10. bg	5.84	1506	-1119.	7 39		175
35	13.80	10.74	5.84	1503	-149.1	0.51	1.64	175
40	13 80	10.77	5.87			0.6	1.651	175
45	13.81	10.70		1504	-149.0	0.42	1.70	175
50	13.80	10.69	5.88	1506	-148-9	0.42	1.69	175
55	13.80		5.89	1503	-149,1	0.41	1.70	175
	- V 700	10.64	5.91	1507	-1423	0.40	1.73	\$75
	<u> </u>							
1								
								
				,				

				-				
								
ter sample:	11			——————————————————————————————————————			——————————————————————————————————————	
ne collected:	11:45		To	otal volume of pu	irged water remov	ed:	<u>5 gallor</u>	1s
sical appeara	,			F	hysical appeara	ے۔ ce at sampling	y	
Co Od	olor clear					Color _	clear	
en/Free Produ						Odor	none	İ
<u>,</u>					Sheen/Free F	Product	none	
nples collecte	ed:							
ainer Size	Container T		Collected	Field Filtered	P	reservative	Cóndainer p	H
Home	- Xio	4	6	1	J ,	ttc1	\\Z	टेंड
utre_	/ //m	ner	6	1 7	V	non	LP	coss,
			·					
·					L			
es:								1

MB/MBD also collected here

Date Site Name Site Location	3/18/03 Sillivan's NBN BEDFO	LECKE Eva	rsonnel acuation Method appling Method	od B/A	Flow Grou AAA/JAD DOEZ RUMP Flow	nd Water (Weather _ Well # _ Project #	SUNAM	-48°F
	ell •	ft. ft. ft.			urements taken from		ve Casing	S _* (6 0 9
Elapsed Time O S 10 15 10 10	, Position pu	Temperature 11.74 11.89 11.71 11.79 11.77	ned interval &	maximum pumi	Oxidation Reduction Potential -/83.4 -/84/.2 -/83.2 -/83.2 -/83.3 -/81.5 -/83.3 -/82.0 -/82.0	Dissolved Oxygen (mg/l) 2.63 3.08 3.37 3.26 7.55 3.04 3.20 3.07 3.22	Turbidity (NTU) 249 5.13 4.39 4.42 4.87 5.14 4.52 4.28 4.61	Flow Rate (ml/min). 150 ml/min 1
ical appeara	olor Clear dor none uct none		Collected		Sheen/Free Pi	Color Odor	Leav none none	OCIS CBS

les collecte iner Size			# Collected 2 2 2	Field Filtered	P	reservative HCL Nova	Gordaines-pl	Cs B's
iner Size	ed: Container		# Callected	Field Filtered	P		Gontainer-pl	4 7 5
iner Size	ed: Container		# Callected	Field Filtered	Ìp.	reservative	Containar n	
	NOWIE							
VFree Produ	ict ala ana				Sheen/Free F		none.	
Od	or none	30 😿				Color Odor	Clar	
Col				. 1	Physical appeara	ce at sampling	-1	
collected:			То		arged water remov	ed: _	l'Gallos Clear	2
sample:	9:00			·				
								
								····
		ļ	 					
			 					
			 -					
			 					
							•	
V								·····
								<u>, </u>
tU	8.24	7.63	6.83	8.19	-114.6	4.86	0,90	100
汉	8.24	7.6	6.83	817	-114.5	4.86	0.95	100
30	8.34	7.6	6.83	818	-114.6	4.86	0.96	100
25	8-241	7.58	6.84	Sal	-114.3	4.89	1.47	100
20	<u>8.24</u>	7.40	6.76	818	-116.5	4.88	1.27	100
15	8.24	7-47	6.78	791	-117.5	11.01	95	100
10	8-24	7.48	6.80	762	-117.8	11 29	1 71	100
5	8-23	7.35	- 1	653	-125-6	3.61	100	150
0	8.22	7.30	6.95	612	-134.5	2-12	2-00	Rate (mi/r
ne .	Water	Temperature	рН	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow
psed	Depth To				Oxidation	Dissolved		
<u> </u>	Collect readir	ngs at every three	minute intervals					
	Position pum	p in center of scre	ened interval &	maximum pumr	in ping rate of 0.5 lite	rs/minuta		
ater param	eters: Lower subme	ersible pump slow	h. than			(Other, Specify) 	
3		ft.				Top of Protecti	ve Casing	
epth to Watenoth of Wa	ter *	ft.				Top of Well Ca	sing	
epth of Wel	07	•23 R.		• Measu	rements taken fro	m		
ell informa	ation:				VI RAV	Project #	200001	5.100
ite Location	New Bed		mpling Method	Diag	A Plan		MW	-4
ite Name	Sulliana	T 1	ersonnel racuation Method	<u> </u>	4,1740	Weather	Survey	505
ate	3/18/07		ersonnel	Low	Flow Grou	ind Water S	ampling Lo	g

	0 - 1-2			Low	Flow Groun	nd Water S	Sampling L	na
Date	3/17/03	-	Personnel	JAD	AAA	Weather	Sun	
Site Name	DWILLIAM	edge E	vacuation Method	Bla	dday Auny		Alla	1750 %
Site Location	New Bedle		ampling Method	La	w Flow	_ Project #	2000	6
Vell inform	ation:					_ 10/60(#	20000	15.009
epth of We			•					
epth to Wat		-12 n		Measu	rements taken from	-		
	ater Column		·			Top of Well Ca		
				,		Top of Protecti (Other, Specify		
later agen							') 	
later param	j	rsible pump slov	My through stagn	ant water colum	in		Ch	a had C
	Collect readin	as at every three	reened interval & minute intervals	maximum pumi	oing rate of 0.5 liters	s/minute		eubed Ca 0 = 9.96
	Depth	J Control of the control	THIRDLE ITHEIVAIS	Γ	Oxidation	Dissolved		0-4.76
apsed	То				Reduction	Oxygen	Turbidity	
me	Water	Temperature	: pH	Conductivity	Potential	(mg/l)	(NTU)	Flow
0	5.18	13.11	X 5-0X	1201	-102-5	10.05		Rate (ml/mi
5	5.20	12.93	<u> </u>				1000	NORP
10	C.20	12.80		1203	-48.3	6.87	0.0	225
15	5.40	10.27	3.39	1215	-94.3	11.55	0.0	225
	<u>5.20</u>	13.4	3.12	1212	-93.5	5.98	0.0	225
20	<u> </u>	13.94		1215	-93.9	子.07	0.0	225
25	5:20	13.20	3.01	1214	-98.3	4.47	0.0	225
30	<u> </u>	12.29	2-45	1204	-83.5	5.91	0-0	
35	5.20	12.16	2.26	1195	-76.0	8.07		225
40,	5.20	12-14		1191	-142			205
45	5.20	12.18	2.09	1179	67.3	592	0.0	225
50	5.20	12.15	407	11-1	-55.0	<u>6.50</u>	0.0	225
~	5.20	12	1 77		-40.5	6.61	0.0	225
~		12.20	1:42	1168	-29.5	7.05	0.0	225
60	5.20	12.21	1.67	1159	-18.4	5.08	0.0	225
ps	5.20	12.27	1.05	1149	-9.5	6.47	0.0	222
70	5.59	12.18	1.59	1144	-1.7	6.19	0.0	2.25
3 \$	5.50	12.15	1.59	1143	-0.9	6.28	0.0	7.25
0	5.20	12.17	1.57	1143	+0.1	6.61	0.0	225
5						00,		000
to								
								
r sample:	·							<u> </u>
collected:	12:45		T	otal volume of o	urged water remove	ad.	36	
ical appeara	ince at start				Physical appearage	o at campling	<u> </u>	
	olor <u>lear</u>					Color Color	clear	
	dor none					Odor	none	•
n/Free Prod	uct <u>none</u>				Sheen/Free P	roduct	none	•
les collect	ed·							
iner Size	ed: Container i	yne	46.412.2					
40m			# Collected	Field Filtere		eservative	Container	7/ t.
			15.7	•	N	HCL		767
			 					
				i	i		Į.	

				Low	Flow Groun	nd Mator C		
Date	3 403	Pe	rsonnel	37	l low Groun		ampling Lo	
Site Name	Sullivano	— ₁	acuation Method	756	Jac Din	Weather	- SINK	14,505
Site Location	News Bed	X AC	mpling Method	100	der Pun		MIN-6	4
Well informa	tion.	TO BE			PION	Project #	200001	5-009
Depth of Well		•						
Depth to Wate		n. 7-50 n.		* Measure	ements taken fron	-	0-	YOF!
Length of Wa		ft.				Top of Well Cas	ing XF	
						Top of Protective (Other, Specify)	e Casing	104
Water param								
water param	į.	sible pump slow	y through stagn	ant water column				
,	Collect reading	gs at every three	minute intervals	maximum pumpi	ng rate of 0.5 liter	s/minute		
	Depth		l line vals	<u> </u>	Oxidation	Dissolved		Τ
Elapsed	То		1		Reduction	Oxygen	Turbidity	Flow
Time	Water	Temperature	рН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
0	5.65	9.31	363	1150	-11.0	1.67	33·0	250
5	5.65	9.27	3 2.76	ILEO	62.8	2.75	14.0	257
10	5.65	9.31	2.53	1143	051	3.6	4.39	200
15	5.65	18.17	2.44	11111	120 8	1 2 1 1	4.84	280
20	5.65	10.9	3.00	1111	79.6	9.00	4.04	150
25	5.65	11.25	2 00	1100	133.3	200	446	120
30	5.65	1 50	277	1162	17.7	438	4.51	150
		1 1 2	3.00	1159	160.5	3.99	<u> </u>	150
35	5.65	11.10	3-02	1154	1,665	3,82	10.8	150
40	565	12.0	3.06	1153	171.1	.366	15-0	150
55	5.65	12:53	3.09	1153	189.5	2.97	14.2	150
	5.65	11.31	2.89	11.56	2005	2-88	13.0	150
55	5.65	1.20	273	1150	2328	2.72	8-8	50
60	5-65	11.17	2.63	162	244.1	4 1.89	8-11	ISA
65	5.65	11.69	257	(151)	2601	1.12	687	1/50
70	5-65	10.87	2.29	150	231.3	1.49	1,117	124
75	5.65	ILOL	7.25	1150	780.8	7.15	77	-150
80 85	5.65	10.41	2.02	11/10	303.2	1.21	383	-
85	5-65	10.37	1 32	11/12	701	133	4.60	150
20	5.15	0.71	135	11.0	521.0	1.13	1.70	WOO_
95	5.65	10 30	1 72	1147	200.2	1.21	1.14	<u> </u>
iter sample:		10. [1	1.70	1121	336.0	1.20	1.69	150
ne collected:	15:45		т.	otal volume of pu	irged water remov	ved:	6 gallon	^
ysical appeara			·		Physical appeara	ice at sampling	C gamon	<i>\oldsymbol</i>
	olor clean u	and navo	Ь	·	my olocu, appeal ag	Color	choor	
	dor Mone	<u> </u>				Odor	none	
en/Free Prodo	uct hone				Sheen/Free	Product _	none.	
nples collect	ed:				<u></u>			
ntainer Size	Container 1	Гуре	# Collected	Field Filtered	i i	reservative	Container	.H
LON	al Vi	al.	2	N	<u> </u>	Ha	VIC	C/S
litre	AM	ser	<u>a</u>		1	Dona		CBIS
	-							
` c ;								

	A 14 a 1 a 2 a 2 a 2			LOW	<u>Flow Groun</u>	<u>id Wa</u> ter S	ampling Loc	1
Date	3/19/03	Pers	onnel	an	JAD	Weather	Sunni	
Site Name	Sullivans Le	doe Evac	uation Method	Blade	T. A.	Well#	MIN-II	1 300
Site Location	NewBedfor	Samp	oling Method	Tow	Flaw	Project #	2000015	I
Well informa	tion:							<u> </u>
Depth of Well	• •	ft.		* Measure	ements taken fr <u>om</u>	.		
Depth to Wate		•30 ft.			1	Top of Well Cas	ring	
ength of Wat	er Column	ft.				Top of Protectiv		
						(Other, Specify)	.	
Vater parame	eters: Lower subme	rsible pump slowly t	hrough stagn	ant water column		-		
	Position pump Collect reading	in center of screer gs at every three mi	ned interval & nute intervals	maximum pumpii	ng rate of 0.5 liters	s/minute		
	Depth				Oxidation	Dissolved		Ţ.
lapsed	То		1		Reduction	Oxygen	Turbidity	Flow
ime	Water	Temperature	рН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
0	15.30	9.95	6.56	1404	-158.9	2.16	每19.5	300
5	15.30	19-110	6.34	1451	-163-8	0.76	12.5	3.50
10	15.30	10.59	6.30	1457	-166.0	0.58	13-4	250
15	15.30	10.67	6.26	1460	-164.7	0.49	113	200
20	15.30	10.55	6.21	1157	-162.9	0.54	8.99	200
25	15.32	10.87	6.17	111511	-1610	N 51	(05	
30	15.32	10.78	6.15	1454	-150 7	0.30		200
35	15.37	10 21	212	11151	-150.7	0.61	647	200
40	15.30	1018	6.13	1436	100.5	0.62	5,95	200
45	19.32	10.00	1	1457	-157.0	0.61	4.99	200
50	10.32	10.74	6.13	1456	-154.2	0.62	4.67	200
55	15.32		6.11	1456	-154.6	0.62	4.20	200
/		10.76	6-11	1456	-153.4	0.63	4.08	200
60		10.98	b .[]	1454	-153-2	0.65	4.09	200
66	15-32	10.97	6 08	1454	-153.1	0.65	3.65	200
70	15.32	10,99	6.07	1457	-157.8	0.67	3.80	200
								
ter sample:								
ne collected:	9:30		` Т	otal volume of n	rged water remov	od:	50.	
 sical appeara/			,		hysical appeara	_	<u> </u>	
	olor hone			r	***	Color	none	
	dor none	·				Odor _	none	
en/Free Prod	uct mane				Sheen/Free I	Product	none	
nples collect	ed:							
tainer Size	Container	Type #	Collected	Field Filtered	P	reservative	Sontainer:	Н
100ml	Yia		2	N		Itci	VOC	3
lyne	Am	ber	2	N		none	PCE	5
_								

·	7/10/10			Low	Flow Grou	nd Water S	ampling L	oa
Date Site Name	9/18/03		rsonnel	JAD	200	Weather		-45%
	SULLIVANS LED	GE Eva	cuation Metho	d Blace	Ider Pund	Well #	MIN	15
ite Location		Sar Sar	mpling Method	Law.	Flow	Project #	200001	5.009
Vell informa								
epth of Well epth to Wate		ft.		* Measu	rements taken from	m		
ength of Wal		.25 n.			V	Top of Well Ca	sing	
engaror vva	ter Column	ft.				Top of Protectiv	e Casing	
						(Other, Specify)	1	
ater parame		rsible pump slowly	through stagn	ant water colum	n			
,	Collect readin	p in center of scree	ened interval &	maximum pump	ing rate of 0.5 liter	rs/minute		
	Depth	go di every allee il	inide intervals		Oxidation	Dissolved		
apsed	То				Reduction	Oxygen	Touchidia	
ne	Water	Temperature	рН	Conductivity	Potential	(mg/i)	Turbidity (NTU)	Flow
0	18.05	12.51	6.44	/227	-141.5		2.34	Rate (ml/min
5	18.22	12,44	6.19	1221		561		225 ml/m
10	18-20	12 1.1	1	1 -	-136.8	5.09	2.83	225
15	1020	160	6.04	1300	135 4	4.00	210	200
20	18,20	11/3	D.D	1208	-131.8	3.35	2.88	200
	1000	11.63	5.86	1200	-128.8	3.17	0,83	200
25	10.31	11.79	5.88	1197	7.29.9	2.90	1-01	200
30	18.31	12.09	5.92	1/93	- 129.0	2.83	0.27	200
5	18.30	12.34	5.93	1185	130.6	2.70	0.89	200
10	18.30	12.51	5-92	1182	-121.3	2.69	0.83	200
					131.3		N. 9	200
								
								
								ļ
			 					
		·]
							··	
		<u>, </u>						
								
r sample:	///- 2 2	r						1
collected:		-	Т	otal volume of pu	irged water remov	ed:	3 GAL	,
cal appearar		•		f	Physical appeara	ce at sampling	- 4	
Co Od						Color	Clase	A
√Free Produ						Odor	ARK	· 1
۶	trout				Sheen/Free F	Product	<u> </u>	•
	ed:							
les collecte				938 27, 988 230 330 3		Statistical William Company	Service and the service of the servi	
iner Size	Container	Type /	# Collected	Field Filtered	44.73 (1984) P	reservative	Continue	Charles on a
iner Size	Container VIAL	Type g	Collected		<u> </u>	reservative	Container	ACS-
iner Size	Container VIAL	Type 1	Collected	Field Filtered	P	reservative HCL MONE	Container	MUKUS NCS — CBS

				Low	Flow Grou	and Water 6	Sampling Lo	
Date	3 18 03	Per	sonnel	ΔΔ	ADAD	Weather		
Site Name	Sultivans Le	dae Eva	cuation Metho	od Bla	ddad Dag	_	Moudy	,40 F
Site Location	Now Bedle	San	npling Method	م ا	S DIO	Well#	-MW.	24
Well informat					ALT WAY	Project #	200001	5.009
Depth of Well		ft.)	•	
Depth to Water		-01 ft.		Measu	rements taken fro	_	\mathcal{A} /	AGG OF Z
Length of Wate		ft.				Top of Well Ca	sing	25.7
						Top of Protecti (Other, Specify	ve Casing	012
Water parame	ters: Lower submer	sible pump slowly	through etc.					
•		in center of scree	ned interval &	nant water colum	ing rate of 0.5 lite	sa/min.ut-		
	Collect reading	s at every three m	ninute interval:	s S	mig rate or 0.5 lite	is/minute		•
	Depth				Oxidation	Dissolved		T
Elapsed Time	То				Reduction	Oxygen	Turbidity	Flow
	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
0	17.15	10.48	6.86	966	-26.4	2.87	342	360
5	17.21	10.97	671	973	-45.0	2.26	341	500
10	17.29	11.03	6.66	955	-41.	2.23	334	325
15	17.30	11.08	6.65	942	-41.3	2.06	282	225
20	17·33	11.11	6.13	921	-39.3	1.98	211	720
25	17.37	11.18	661	903	-110.9	2.08	911	220
30	17.40	11.22	6.60	878	-38.1	2.577	100	225
35	17.37	11.08		8663	-37.7		140	325
40	17-40	11 72	6.59	0.4		2.09	140	200
45	12.39				-37.6	2.53	100	200
58	17.39	11.37	6.68	789	-32.3	2.62	100	200
8	7.39	11.08	 	140		2.19	101.0	200
60	17.45		6.59	782	-35.4	2.36	102.7	200
65	17.50	11.37	6.58	873	-36.8	1.76	99.0	200
27		11.38	6.57	819	-39.0	2.63	90.7	Z00
32		11.29	6.57	831	-38.2	3.73	90.3	200
75	7.50	11.32	6.56	856	-35.9	3.26	85.3	200
60	17.50	11.57	6.54	853	-36.6	3.45	87.1	200
77	17.50	11.40	6.54	854	35.5	3.51	87-0	200
90	17.50	11.51	6.52	852	-36.9	1.98	85.6	200
ter sample:								·
e collected:	:45							
sical appearance			7		urged water remov		56.	
Cold		muse			Physical appeara		1	
Odo	none	J				Color Odor	ight oraq	e Mear
en/Free Produc	none				Sheen/Free	_	none	
iples collected						_		
tainer Size	. Container T	voe i.	Collected			400000000000000000000000000000000000000		
HOM	Via	t "	2	Field Filtered		reservative	Container	THE PARTY OF THE P
litre		per	2	'K) 	HCL Non	, VO	CBr
			<u> </u>					
S.								

1	1 1				5 1			
Jate 3	118/03		rsonnel	, Low	Flow Group	nd Water S	ampling Lo	g
Site Name 5	Mirans		rsonner scuation Methor	. 21. d	DALIP	Weather	Cloudy	,40°F
Site Location	News And	77 - 1		Diag	der Aury	Well #	_MW-2	4
	- OKO IDEW	ZIV, Sar	mpling Method	MON.	DEIGN .	Project #	200001	5.009
Well information	n:			つ				
Depth of Well * Depth to Water *	<u></u>		10/	• Measu	rements taken from	<u>1</u>	a l	AGE
Length of Water		- êo				Top of Well Cas	sing	AB E
9 1 1 1 1 1 1 1 1		n.				Top of Protectiv	re Casing	AGE Lof 2
24/24/22						(Other, Specify)		
Water paramete	<u> </u>	sible pump slowly	through stagn:	ant water colum	n			
l ,	Collect reading	in center or screens at every three n	ened interval &	maximum pump	ing rate of 0.5 liters	s/minute		
	Depth	Jo at every direct	initiate intervals	<u> </u>	Oxidation	1 =		
Elapsed	To	1			Reduction	Dissolved		
Time	Water	Temperature	На	Conductivity	Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow
95	17.57	11.52	648	816	-36.8	2.20	87-1	Rate (ml/min).
160	7.51	11.59	6.46	GUIL	~202	2 20		200
105	17.51	11.67		815	301	a. 29	86.9	200
110	17.51	11 5	6.45	813	37.1	224	867	200
		11.51	10-44	012	-39.4	2-18	84.1	200
		 			 			
			 					
B								
·								<u></u>
								
1			•					
			-		 -			
			-					
								
					· .			
ter sample:								
ne collected:			_					
sical appearance	at start		To		irged water remove			
Color	5.0.7			F	hysical appeara			
Odor			1 1	7. ~		Color Odor		
en/Free Product			\ <i>0</i> \		Sheen/Free P			
mples collected:								
tainer Size								
	Container T	ype //	Cellected	Field Filtered	Pr	eservative	Container p	H
		-	· · · · · · · · · · · · · · · · · · ·	+				
				-				
			······································	†				
es:				<u> </u>	<u> </u>			
								ŀ

ATTACHMENT C

WESTBAY FIELD SHEETS

Sullivan's Ledge Low Flow Groundwater Sampling Equipment **Calibration Record**

COMPLETED BY:

INSTRUMENT MODEL: 451

YSI Calibration Record **MANAM** 6920

STANDARD INITIAL READING CALIBRATED READING pН 70 4 <u> 399</u> 10 ORP 100 mV Specific Conductance Dissolved Oxygen 87.6 % 973

INSTRUMENT MODEL: Turbidity Meter Calibration Record

	STANDARD	INITIAL READING	CALIBRATED READING
Turbidity	0	2.37	OALIDIOTED READING
	10	7.0	9.86

Sullivan's Ledge Low Flow Groundwater Sampling Equipment Calibration Record

COMPL	ETED	BY:

END OF DAY CHECK.

YSI Calibration Record

	STANDARD	INITIAL READING	CALIBRATED READING
pН	7	I. 02	
	4	4.03	
000	10	10.03	
ORP	100mV	103.0 MV	
Specific Conductance	1000 w cm	1001-04/	^
Dissolved Oxygen	100%	994%	

Turbidity Meter Calibration Record

STANDARD **INITIAL READING CALIBRATED READING Turbidity**

Sullivan's Ledge Low Flow Groundwater Sampling Equipment **Calibration Record**

COMPLETED	BY:
-----------	-----

YSI Calibration Record

INSTRUMENT MODEL: 6920 761

	STANDARD	INITIAL READING	CALIBRATED READING
pΗ	7	6.93	6-99
· · ·	4	3.58	4.00
ORP	10	10.01	10.00
ONF	100mV	115.9	100.0
Specific Conductance	1000 us/un	937	1007
Dissolved Oxygen	100%	120%	99.1

Turbidity Meter Calibration Record

	STANDARD	INITIAL READING	CALIBRATED READING
Turbidity	0	0	0
	10	12.2	9.99

Sullivan's Ledge Low Flow Groundwater Sampling Equipment Calibration Record

KIND OF DAY CHECK.

COMPLETED BY:

DATE: 3

TIME

16:15

YSI Calibration Record

INSTRUMENT MODEL: 6920 751

	STANDARD	INITIAL READING	CALIBRATED READING
рН	7	7.08	
	4	4.03	
ORP	10	10.01	
	100 mV	100.8	
Specific Conductance	1000 w/cm	994	
	1000 lyan	998	·
Dissolved Oxygen			<u> </u>
\	100%	130%	

Turbidity Meter Calibration Record

INSTRUMENT MODEL: La Motte, 2020

	STANDARD	INITIAL READING	CALIBRATED READING
Turbidity	0	0.0	
	10	10.07	

Sullivan's Ledge Low Flow Groundwater Sampling Equipment **Calibration Record**

COMPLETED BY: JAD

YSI Calibration Record

INSTRUMENT MODEL: 751 6920

STANDARD	INITIAL READING	CALIBRATED READING
7	7-46	7.00
4	12 MAR 4.9	11.00
10		10.03
100.01		
LOUWV	48-6	99.9
1000 us/en	996 - 8	च् वृष्-प
100%	981	100-4
	7 4 10 10 100mV	7 7-46 4 10 10-31 10 98-6 1000 w/m 996-8

INSTRUMENT MODEL: (a Motto 2020)

	STANDARD	INITIAL READING	CALIBRATED READING
Turbidity	0.0	0-0	0.0
	10.0	[0·Z]	9.98

Sullivan's Ledge Low Flow Groundwater Sampling Equipment Calibration Record

COMPLETED BY:

TIME:

YSI Calibration Record

INSTRUMENT MODEL: 6920 451

	STANDARD	INITIAL READING	CALIBRATED READING
рН	7	7.06	
	4	3.99	· · · · · · · · · · · · · · · · · · ·
ORP	10	10.13	
ORP	100mV	98.8	
Specific Conductance	1000 w/an	1062	
Dissolved Oxygen	100%	102.9%	

Turbidity Meter Calibration Record

INSTRUMENT MODEL: La Motte 2020

		1	·
	STANDARD	INITIAL READING	CALIBRATED READING
Turbidity		0	
	10	07.01	

PHA	CHAIN O	F CU	STO	DY PA	GE	OF		, Ri	e q in	i de						A	LPHA	Joba						
Eight Walkup Drive V	Vestborough, MA 01581		Informat				Report Information - Data Deliverat									Е	illing	Inform	ation					
TEL: 508-898-9220	FAX: 508-898-9193			ILLIVA			D FAX									Same as Client info PO#:								
Client Information				kn E					Ex Criteria Checker:								O'Brien-Gere							
Client: MABBET-	T e /Assoc.			20015			┨.			sed on F		ory Crit	eria Indi	cated)										
Address: 5 ALF	RED CIRCLE			and 5	itein	serg		EMA	IL (sta	ndard	pdf r					R	egula	tory Re	equiren	ents/R	eport Li	mits		
BEDFOR	RD, MA		Quote #:			U				Peliyer			۱۱۷	ت		St	ate /Fe	d	Progran	'	Criteria	а		
Phone: 781 5	_	Turn-/	Around Tir	ne			Re	port t	0: (# d# スペペ	Terent the	n Project	Menage	1 1961	~ ~ 1		-								
	275 5651	☑ Standa	ard	□ RUSH (nly confirmed if p	pre-epproved()								Ŭ										
Email: Steinber	ng @ mabbett. con	Date Du	10:		Time:			g /		7		7	7	\mathcal{T}	7	\mathcal{T}	//	7	/			0		
These samples have	been previously analyzed by Alpha cific Requirements/Comm						See 1	2		//	$\sqrt{}$	/	/ · /	/ /	/ /	/ /	/ /	/ /	/ SAMP Filtrat	LE HAN	DLING	T A		
TRIP + TE METALS -	PREPORT 7 LI	N CO		<u> </u>			₩ /		(18)	3			//	//	//	//	//	///	□ Lab Presei □ Lab	needed to do vation to do		# B O T		
ALPHA Lab ID (Lab Use Only)	Sample ID		Coll Date	ection Time	Sample Matrix	Sampler's Initials	1	/		7 /	/ /	' /					/ ,	Sam		pecify below		E S		
	OBG-T	3	3/19/03	1500	SW	JAD	2	2	1					T							····onic	5		
	MW-2		3/18/03	1600	CW	JAD	2	2							1							4		
	MW-14		3/9/03	9:45	GW	TAD	2	1					_	T	†							12		
	GCA-1		3/19/19	 	1 -	TAD	1	 			\top		-	+	_							1		
	GG-1-	·	3/19/13	+	SW	TAD	5	7			- -	+	+-	 	-		$\vdash \vdash$	····				4		
	G(A-1-		 		CW	JAD	2				-	+-	╁┈	+	1-		-							
	TRIP		3/10/13	 ' ` 	<u> </u>	1)5		\dashv	-	-	+	-		ļ	 		-							
	IKIT		710/13	1013		00		+		-	+	\dashv	+	┼	<u> </u>	-						+		
								\dashv		+			- 	 -					·			4		
		······································					-		-		-		+	-	-				•	· · · · · · · · · · · · · · · · · · ·		4		
		D. Tolkie in a	is the second of the second	George Control	<u> </u>											,		 ,						
She	aded Gray Arags For Lab	Use Onl	/			iner Type eservative	K N	A	P			4,	-	-				comple	etely. Sa	arly, legi mples ca	an not be	,		
		Kelinqui	shed By:7	///	, Date	e/Time			Rec	eived	By:	/			Pate.	/Time		logged will no	in and to	umaroun til any ar	id time ci mbiguitie	lock s are		
	IN	he	1/01		3/19/0	3 (Ja	me	رود خ	<u> </u>		3	119	2 /	12:	resolve	id, All s to Alph	amples s a's Payr	submitted nent Ten	are		
Form No: 02-02 STD			-	··············	<u> </u>		/					·						See re	verse si	de.	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

CHAIN OF CUSTODY PAGE Project Information					<u>.3</u>	of <u>3</u>	(A)		PERM		MACA.		#13.13p		6. 0 0-7	A	LPH	A Joi	5 #:					
Eight Walkup Drive	Westborough, MA 01581						\	Re	Report Information - Data Deliverables											mation				
Client Information	FAX: 508-898-9193	Project N	ocation	<u>Sulli</u>	van's	Le	م و و	A A ADEX									O Brien & Gere							
Client: M \\	& Associates Inc	Project #	: 2	" Ne	<u> </u>	sed+c	0 F) M1	Criteria Checker: (Default based on Regulatory Criteria Indicated)										1 15	r`.e,	^ *	(466	<u> </u>		
Address: 5 Alf		Project M	Project #: 2000015 . OProject Manager: $Paul D S$		<u>.00</u>	1	┨ _	O	ther F	orma	ts: _			исвтва,										
Bushard	MA 01730	ALPHA (1 0	>te	inberg			AIL (st itional			repor es:	:)				eguil ate /F		Requir Progr	ements	/Report		
	275-6050	Turn-A						R	eport	to: (rd	different	then Proj	ect Mana	jer)						, , og.		- Orac		
	275-5651									ou	<u>u -</u>	tei	n be	rej			-					-		
Email: Ste sh	org @ mabbett.rom	Standa		. 01	RUSH (on)	y confirmed if	pre-approved!)			/ /	7	/	7	$\frac{\checkmark}{7}$	7	7	<u> </u>	7	- 	7				
☐ These samples have	been previously analyzed by Alpha	Date Du	10:		•	Time:			8/	'/		' /				/		/ /	/ /	SA	MPLE HA	NDLING	o J	
Other Design Con	alfa Danilana anta (O	ents:	•		1			-	1,288					/ .	/ /	/ ,	/ /	' /		,	<i>ration</i> Done		A L	
Temp. Blank Trip Bla Tetals > 7 Ust WC's -> Short Ust		rle u	и	100	W1	···	w <u>42</u>	*	\ 3/	/ \/-	/ 6+a/	/ /	/		/,	//	//	//	/ /	□ ι √Pre □ ι	Not needs ab to do servation ab to do	n	# 0 T	
ALPHA Lab ID (Lab Use Only)	Sample ID		Date	Collection	on Time	Sample Matrix	Sampler's	s / -	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3/€	<u>a</u>		/ /	/ /					-		pecific Co		L	
	BFT-1					(-W	WFS	X		/				1		Ť	\uparrow			umpic o	pedile O	Jimments	5	
1 最 v 在 2 首 3 文 4 2 4 3 4 5 2 6 1	086.1			- 1	4.05	. ,		×	†	X	<u> </u>			_		1					· · · · · · · · · · · · · · · · · · ·		5	
1.75 - 1.55 A. 25 May 1740	086-2				4,10			<u> </u>	1	\vdash	ļ ——			+	+	1	+	-					5	
50.65.66克尔沙拉·新拉森	BET-2				<u>'</u>	_	1-1-	+	 		 	-	\dashv	-	+	+-	┧							
definition for the state of					1:15	-	+	X	 		-	\vdash		-	+		+	-			.		5	
ほも異点の 色出版 st 多夜 ! □	BEI-3				4:20		+	×	 	X	-			+	+	-	-	 						
	BEI-3 MS				1.20	-	+	<u>×</u>	-	X					\dashv	+	-	-					5	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	BEI 3 MSD				1.20	-	 	×	1 -	X		$\left - \right $	-	+	+	+	-						5	
34.治療亞。政治營養	Collection Trench		1	-11	1:25		+	×	 	1		$\left \cdot \cdot \right $	-	\dashv	+		+-	-						
COLOR BURNESS SERVICE	Dup #2		w	13	2.00	-1/	—	×	<u>×</u>	X			_			-		-		-			5	
	Trip Blank	A et al	3/10	103 10	6.15		DS	X			•						98				**************************************	1	46	
The state of the s	aded Gray Areas For Lab	Use On					ainer Type reservative	+	A	P									com	pletely.	clearly, I Sample:	egibly ar s can not	t be	
		Relinqui	11:171				te/Time		90	Re	ceive	d By:				Dat	logged in and turnaround time cle te/Time will not start until any ambiguities					ities are		
Form No: 02-03 STD.							3/18/03			L'Edmonds 3					1/8	103	153	resolved. All samples submitted are subject to Alpha's Payment Terms. See reverse side.						

ď.

APHA	CHAIN OF	CUSTO	OY PAG	GE	of <u>3</u>	Date	R š c'o	in La	b: :				A	LPHA	Job#:		7 - 1 - 3' - 3.6
Eight Walkup Drive West	porougn, MA 01581 📁	Project Informati	on			Rej	ort Inf	forma	tion -	Data D	elivera	oles		Billingl	nformation		
TEL: 508-898-9220 FA)		Project Name: 50	llia	1 lg	dip	ی ا	AX	•					۵	Same a	s Client info Po) #:	
Client Information		Project Location:	<u> </u>	Bed for	21_	سور [KDEx Criter	ria Che	cker:					O'r	3 rien.	· (-0.00	-
Client: MABRA-T-		Project #: 20000	215 Q	29 7			(Defau	it based	on Regul	atory Crite	ria Indicat	rd)				- (34 \	•
Address: 5 ALTIVE	D CIRCLE P	Project Manager: P	ul c	teinb	0161	ן ם ן		r Forma (standa		report)				Regulat	tory Requireme	nts/Report Lim	nits
BEDITUM	7, 1 4	ALPHA Quote #:			, <u>J</u>	0,	Addition	al Deli	verable میناند	es: 2/5	Λ			tate /Fed		Criteria	
Phone: 3 3 3 3 5	6020	Turn-Around Tin	ie			Rep	ort to:	if different)	than Proje	Manager Loes			·				
Fax: 781 276	5 5651	Standard	□ RUSH (or	ly confirmed H i	ura ennouved/1		144	·	<u> </u>	yoes	9						_
Email: Sterviorica	mabbetton	Date Due:		Time:	ж ө-а рди 0 v в ц:)	2		\mathcal{T}	/ /	./	/ /	7	1	//	//		Ţ
Other Project Consider	previously analyzed by Alpha					٤		/ /	' /	//	/ /		/ /	/ /	/ SAMPL	EHANDLING	T A
Puller Project Specific	Requirements/Comments TCMP BLAN	nts: Un lo	0101			AWALY	/ /	_/_		/ /		/ ,	/ /	//	/ Done		L #
25120						7/	40	7.	/ /	' /.	/ /			/ /	│ □ Not n □ Lab to	do	В.
	DIET LIST					\?\	10	/ /	' /	//	/ /		/ /	/ /	Preserv □ Lab to		O
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle Date	ction Time	Sample Matrix	Sampler's Initials				/ /	/ /		/ /		/ /	Sample Specifi		LE
	MW:15	3/18/03	14.30	GW	AAA	7	7								ошпрю ореан	Comments	-
	MW-6	3 17 13		1	JAD	2											
	ECJ-2-47			1	CLM	2		-				_	+				
	ECT-7-82	777	13:15		CIM	5			\vdash			_	\dagger	 			
	E(T-7 - 117	1 7 7	13.45		CIM	2		 	-			-	+-				
	6-17-7-15	2 3/17/63			~/M	2	-	+			-	+	+				
	E(5-7-18)	7 3/17/03		-	CLM	5		+-	\vdash		+-+		-				
	DUP # 1	 2 4 5 	8.00	1,		2	+	-			-	- -	-				
	TRIP	3/10/03	<u>ه</u> م		CLM			+-	\vdash		++		+	 	<u> </u>		
	· Jc · L	2/10/03	16.17	-	DS				-+	-	$\left \cdot \cdot \right $	-	-		····		
	Grey Areas For Lab Us			Contr	nos Tress		- -	-		_ _		_	-		and the second second		
Shadeo	Gray Areas For Lab Us	9nly			ner Type servative	V F	1	-					-	Y .	Please print clear completely. Sam	ples can not be	
	//	Relinquished By:			/Time		外	leceive	ed By:			, Dat	e/Time		logged in and turn will not start until	naround time cloc	ж are
		VMI		3/15/0-	3 (5.7/)	D	-11	M	X	d	7 /2	+ +	315	700	resolved, 'All san	ples submitted a	are
	77			1 1 1	<u> </u>	7 \			276			цш	9 / -	<i>) </i>	BUDIOCE TO Alinha's	Payment Terms	

PHA	CHAIN O	F CUST	ODY PA	ge	of <u>3</u>	Pen	i ge d	in Labe			Taga.		ALPH	A Job#:	
Eight Walkup Drive	Westborough, MA 01581	Project Infor				Rep	ort Info	ormatio	n - Dat	a Deliv	erable	S	Billing	Information	1 (4) (4)
	FAX: 508-898-9193	Project Name:	SULLIVANS	1006	Ē.		DEx		-	-		1	□ Same	as Client info PO#:	
Client Information		Project Location	n: 1KWBO	40,	,114	J 02/2		a Checke	er:			$\int_{\mathcal{L}}$	0.60	7169 · GER	2 _L -
	IT I SOUNTS ,	Project #:	200001	5 00	9] .		based on R Formats:		Criteria In	dicated)	_		- Vigitaria	
	HEARD CACKE	Project Manage	r. PSTEIN	BRG		و 🏻 📗	MAIL (s	standard	pdf rep	ort)		_	Regul	atory Requirements	/Report Limi
	MO 111 01730	ALPHA Quote	* :			-	9	I Deliver	0/4	118	<u></u>		State /F	ed Program	Criteria
Phone: (75)	375 - 6050	Turn-Around	dTime			Rep	ort to: a	different than	Project Ma	naneri		_			-
	375 - 9651	Standard	☐ RUSH (or	nly confirmed if	pre-approved!)				×	- :}					
Email:		Date Due:		Time:				/ /	7	77	/ /	/ /	//	/ / /	
	re been previously analyzed by Alohi ecific Requirements/Comr					Ž	[/ /	/	/ /		//	-	//	SAMPLEHI Filtration	ANDLING
Therais A	NALTOS -> 7 ME	CHANCE OF THE	sisse E.C.	·.		AWALYSIE		$\sqrt{\ /}$		//	///	//	///	│ │ □ Done □ Not need □ Lab to do	
	SHORT LIST.] [[$\langle \gamma \rangle$		/ /	/	/ /		/ /	Preservation ☐ Lab to do	
ALPHA Lab ID (Lab Use Only)	Sample ID	Dat	Collection e Time	Sample Matrix	Sampler's			//		//		/ /	/ /	(Please specify b	
	ECJ-1-37		163 9.09		WFS	a	_/_	1 1		/ /	1		-	/ Sample Specific C	omments
	ECT-1-62	1	9 35		1	2	+	1-1-				\dashv			
	F(7-1- 72		11.15			2		++		\vdash					
	EC)-1-122		11.25		++,	3		-							
		, }	- • • • • • • • • • • • • • • • • • • 		V	4		 		-	-				
	<u>(C)-1-148</u>	·	12:00		CLM	12		-	-				_ _		·
	<u>(C)-1-26-</u>		13:00		NFS	2		_ _							
	EQUIP. BLANI	<	13.15	! -	WFS	 									
	MW-4		/ 9:∞		JAD	 	2								
	MW. PY	3/17/	03 15 15		JAD	2 3	2								
	MW-24	3/18/0	3 11-45		JAP	2	2						N/		
ļ. LSI	naded Gray Areas For Lab	Use Only			iner Type	y /	7							Please print clearly, k	egibly and
PROTECTION OF THE PARTY OF THE		Relipquished B	v.		eservative	1217	7	<u> </u>			+			completely. Samples logged in and turnaro	und time clock
		The state of the s			e/Time	1		ceived E	y:	1	2/1	ate/Tir	me /57/	will not start until any resolved. All sample	s submitted are
			01	+-+-	11 40	17 \ \		IN		44.J	-17112	<i>3/U2</i>	1124	subject to Alpha's Pa	vment Tenns

Table 1 Sullivan's Ledge Superfund Site New Bedford, MA

Groundwater Elevations - Conventional Wells March 25, 2003

GCA-1		Point]	Water		Elevation	
	84.06	Plastic Cap	SITEC 08/10/01	12.50	3/25/2003	71.56	(1)
MW-2	101.81	Plastic Cap	SITEC 08/10/01	15.71	3/25/2003	86.10	(1)
	90.17	Top pipe	SITEC 08/10/01	8.16	3/25/2003	82.01	
MW-4A	90.17	Top of PVC	SITEC 08/10/01	0.10	3/25/2003	02.01	(2)
MW-5	82.79	Top pipe	SITEC 08/10/01	7.53	3/25/2003	75.26	(2)
MW-5A	82.30	Top of PVC	SITEC 08/10/01	7.89	3/25/2003	74.41	
MW-6	73.81	Top pipe	SITEC 08/10/01	5.46	3/25/2003	68.35	
MW-6A	73.54	Top of PVC	SITEC 08/10/01	5.12	3/25/2003	68.42	
MW-7A	66.91	Top of PVC	SITEC 08/10/01	J. 12	3/23/2003	00.42	(3)
MW-8	69.97	Top pipe	SITEC 08/10/01	2.85	3/25/2003	67.12	(0)
MW-8A	70.00	Top of PVC	SITEC 08/10/01	3.51	3/25/2003	66.49	
MW-9A	66.53	Top of PVC	SITEC 08/10/01	3.01	3/23/2003	66.53	(3)
MW-10	68.20	Top pipe	SITEC 08/10/01	1.30	3/25/2003	66.90	(5)
MW-10A	70.54	Top of PVC	SITEC 08/10/01	4.77	3/25/2003	65.77	
MW-10B	68.35	Top pipe	SITEC 08/10/01	1.50	3/25/2003	66.85	
MW-12	83.91	Top of PVC	SITEC 08/10/01	1.00	3/23/2003	00.00	(4)
MW-12A	84.15	Top of PVC	SITEC 08/10/01	8,01	3/25/2003	76.14	
MW-12AR	85.04	Top of PVC	SITEC 08/10/01	12.73	3/25/2003	72.31	
MW-13	89.49	Plastic Cap	SITEC 08/10/01	15.20	3/25/2003	74.29	(1)
MW-13A	89.48	Top of PVC	SITEC 08/10/01	15.18	3/25/2003	74.30	
MW-14	101.46	Top of PVC	SITEC 08/10/01	15.00	3/25/2003	86.46	
MW-15	112.31	Top of PVC	SITEC 08/10/01	18.13	3/25/2003	94.18	
MW-16	120.55	Top of PVC	SITEC 08/10/01	19.75	3/25/2003	100.80	
MW-17	92.56	Top of PVC	SITEC 08/10/01	18.78	3/25/2003	73.78	
MW-22A	85.00	Top of PVC	SITEC 08/10/01	13.65	3/25/2003	71.35	·
MW-24	112.23	Plastic Cap	SITEC 08/10/01	16.82	3/25/2003	95.41	(1)
PZ-1	66.73	Top of PVC	SITEC 08/10/01	1.12	3/25/2003	66.73	
PZ-2	65.91	Top of PVC	SITEC 08/10/01	3.20	3/25/2003	62.71	
PZ-3	65.91	Top of PVC	SITEC 08/10/01	4.35	3/25/2003	65.91	
PZ-5/WP-5	67.01	Top of PVC	SITEC 08/10/01				(3)
PZ-6	68.06	Top of PVC	SITEC 08/10/01	4.78	3/25/2003	63.28	
PZ-10	85.72	Top of PVC	SITEC 08/10/01	14.10	3/25/2003	71.62	
PZ-11	73.79	Top of PVC	SITEC 08/10/01	3.81	3/25/2003	69.98	
PZ-12	82.46	Top of PVC	SITEC 08/10/01	11.35	3/25/2003	71.11	
PZ-13	73.28	Top of PVC	SITEC 08/10/01	3.62	3/25/2003	69.66	
Z-West (14A)	86.73	Top of PVC	SITEC 08/10/01	10.66	3/25/2003	76.07	
PZ-East (15A)	85.98	Top of PVC	SITEC 08/10/01	9.62	3/25/2003	76.36	
PZ-16 (Shal)		Top of PVC	1	3.88	3/25/2003		(5)
PZ-16 (inter)		Top of PVC		3.62	3/25/2003		(5)
PZ-16 (Deep)		Top of PVC		5.52	3/25/2003		(5)
PZ-17 (Shal)		Top of PVC	1 1	4.95	3/25/2003		(5)
PZ-17 (Inter)		Top of PVC		5.62	3/25/2003		(5)
PZ-17 (Deep)		Top of PVC		5.42	3/25/2003		(5)
PZ-18 (Shal)		Top of PVC		8.15	3/25/2003		(5)
PZ-18 (Inter)		Top of PVC		8.47	3/25/2003		(5)
PZ-18 (Deep)		Top of PVC		7.92	3/25/2003		(5)
PZ-19	64.89	Top of PVC	HLA 10/25/01	2.71	3/25/2003	62.18	
PZ-20	65.38	Top of PVC	HLA 10/25/01	3.15	3/25/2003	62.23	
PZ-21	65.48	Top of PVC	HLA 10/25/01	2.47	3/25/2003	63.01	
PZ-22	67.38	Top of PVC	HLA 10/25/01	3.22	3/25/2003	64.16	

Notes:

- Survey elevation is top of PVC cap associated with low flow equipment; depth to groundwater is from top of casing.
 As a result, actual groundwater elevation is 0.05 to 0.01 ft lower than shown.
- 2. Probe hits pump at 7.30 feet.
- 3. No measurement taken.
- 4. No DTW measurement taken. Installed tubing prevents measurement.
- 5. Top of casing not surveyed.

Table 2 Sullivan's Ledge Superfund Site Westbay Well Groundwater Elevations March 25, 2003

Well	Date	Depth Log (ft)	Depth Cable (ft)	P _i (psi) ⁽¹⁾	P _o (psi) ⁽¹⁾	ΔH (ft)	D _{MP} (ft) ⁽¹⁾	D _z (ft)	E _{MP} (ft) ⁽²⁾	PL (ft) ⁽³⁾
ECJ-1	3/25/2003	37	41	20.44	23.48	7.01	33.96	26.95	89.81	62.86
ECJ-1	3/25/2003	62	66	31.36	38.38	16.19	33.96	17.77	89.81	72.04
ECJ-1	3/25/2003	72	76	33.53	35.34	4.18	33.96	29.78	89.81	60.03
ECJ-1	3/25/2003	122	126	55.35	56.84	3.44	33.96	30.52	89.81	59.29
ECJ-1	3/25/2003	148	151	66.24	67.70	3.37	33.96	30.59	89.81	59.22
ECJ-1	3/25/2003	267	271	118.45	169.34	117.39	33.96	-83.43	89.81	173.24
				00.01	20.50		11.00	5.00	7 70 04	07.05
ECJ-2	3/25/2003	47	47	29.31	33.50	9.67	14.93	5.26	72.31	67.05
ECJ-2	3/25/2003	82	82	43.45	55.32	27.38	14.93	-12.45	72.31	84.76
ECJ-2	3/25/2003	117	117	58.48	63.85	12.39	14.93	2.54	72.31	69.77
ECJ-2	3/25/2003	152	152	73.97	77.83	8.90	14.93	6.03	72.31	66.28
ECJ-2	3/25/2003	187	187	87.88	91.66	8.72	14.93	6.21	72.31	66.10
ECJ-3	3/25/2003	51	63	16.59	31.00	33.24	60.24	27.00	120.74	93.74
ECJ-3	3/25/2003	91	103	34.09	48.31	32.80	60.24	27.44	120.74	93.30
ECJ-3	3/25/2003	126	138	49.37	63.49	32.57	60.24	27.67	120.74	93.07
ECJ-3	3/25/2003	146	158	58.09	71.88	31.81	60.24	28.43	120.74	92.31
							l			
ECJ-4	3/25/2003	62	62	32.57	37.66	11.74	12.12	0.38	70.59	70.21
ECJ-4	3/25/2003	87	87.5	43.51	51.39	18.18	12.12	-6.06	70.59	76.65
ECJ-4	3/25/2003	132	132.8	63.15	71.06	18.25	12.12	-6.13	70.59	76.72
ECJ-4	3/25/2003	162	162.9	76.20	84.06	18.13	12.12	-6.01	70.59	76.60
ECJ-4	3/25/2003	227	227.6	104.24	112.02	17.95	12.12	-5.83	70.59	76.42
ECJ-4	3/25/2003	245	248.1	112.82	120.58	17.90	12.12	-5.78	70.59	76.37

Notes:

- 1. Measured by Mabbett & Associates.
- 2. Top of casing provided by HLA on August 10, 2001.
- 3. Calculated by Mabbett & Associates, Inc. based on procedure provided by Westbay.

P_i = Pressure reading inside measuring port casing

P_o = Pressure reading outside measuring port casing

 $\Delta H = (P_o - P_i)/w w = 0.4335 psi/ft$

 D_{MP} = Depth to water inside monitoring port casing (below top of monitoring port)

 D_z = Depth to static level for monitoring zone = D_{MP} - ΔH

E_{MP} = Elevation of measuring port casing

 $PL = piezometric level = E_{MP}-D_z$

Table 3 Sullivan's Ledge Superfund Site Groundwater Elevations - Recovery Points March 25, 2002

Recovery Point	Top of Casing Elevation	Reference Point	Source	Depth to Water	Date	Groundwater Elevation	Notes
		,					
BEI-1	91.40	Top Cover	SITEC 08/10/01	30.20	3/25/2003	61.20	(1)
OBG-1	88.96	Top Cover	SITEC 08/10/01	29.10	3/25/2003	59.86	(1)
OBG-2	85.65	Top Cover	SITEC 08/10/01	41.88	3/25/2003	43.77	(1)
BEI-2	88.06	Top Cover	SITEC 08/10/01	39.93	3/25/2003	48.13	(1)
OBG-3	90.56	Top Cover	SITEC 08/10/01	55.75	3/25/2003	34.81	(1)
BEI-3	92.71	Top Cover	SITEC 08/10/01	34.70	3/25/2003	58.01	(1)
SCTPS	86.02	Top, East Side	SITEC 05/10/99	15.28	3/25/2003	70.74	(2)
IW-E	84.32	Top of Casing	SITEC 08/10/01	17.12	3/25/2003	6 7.20	
IW-W	88.79	Top of Casing	SITEC 08/10/01	17.45	3/25/2003	71.34	
						 	

Notes:

- 1. Survey elevation is top of cover; depth to groundwater is from top of casing. As a result, actual groundwater elevation is 0.05 to 0.01 ft lower than shown.
- 2. SCTPS = Shallow Collection Trench Pump Station

Table 4
Sullivan's Ledge Superfund Site
New Bedford, MA
Recovery Well Extraction Rates Summary
3/14/03 - 3/25/03

	3/14/2003	3/17/2003 ⁽¹⁾	3/18/2003	3/19/2003 ⁽²⁾	3/20/2003 ⁽³⁾	3/21/2003	3/24/2003	3/25/2003
Location	Flow Rate (gpm)	Flow Rate (gpm)	Flow Rate (gpm)	Flow Rate (gpm)	Flow Rate (gpm)	Flow Rate (gpm)	Flow Rate (gpm)	Flow Rate (gpm)
BEI-1	1.47	1.83	1.80	1.69	1.95	1.66	1.59	1.58
OBG-1	1.14	1.39	1.35	1.35	1.39	1.24	1.18	1.20
OBG-2	2.63	2.77	2.76	2.74	2.83	2.74 .	2.74	2.75
BEI-2	0.61	0.71	0.63	0.60	0.76	0.60	0.60	0.62
OBG-3	offline	offline	offline	0.58	0.91	0.67	0.67	0.67
BEI-3	1.27	1.29	1.28	1.29	1.33	1.29	1.28	1.30
Collection Trench	25.01	20.01	30.95	31.91	25.01	31.96	30.02	29.93

Notes:

⁽¹⁾ System was shut down from 19:23 3/15/03 until 8:00 3/17/03.

Recovery well OBG-3 was brought back on line on 3/18/03 afternoon after replacement of the pump,

⁽³⁾ System was down from 21:10 on 3/19/03 until 8:15 3/20/03.

Westbay Well Sampling Logs

Groundwater Sampling

Field Data Sheet

Project Sullivan's hedge Location Ne	w Bedford	Date_3//8/03
Monitoring Well No. 605-1 Sampling Zone No Water Level In MP Casing: (start) 32,78	22 ()	End Time Q127
Sampler Probe Preparation - See Sampling Plan	end) 32,84 Technicia Collection Bottle Prepar	ns <u>CLM/WF3</u> ation - See Sampling Plan

_				ction	Checks	•	Position Sampler		_ `	Sar	nple	Collectio	n Che	ecks			
Run No.	Activate Shoe	Close Valve	Check Vacuum	l	Evacuate Container		 		Activate Shoe	Pressure in Zone ()	Open Valve	Final Zone Pressure	Close Valve	Retract Shoe	Pressure in MP	Volume Retrieved	Comments
	~	V		V	V	V	(411)	19.14	/	9488	V	24.89	V	/	19/4	.25L	,
\neg																	
\dashv																	
+																	
					nH S C e												Total Volume (), 25 L

Field Determinations (Appearance, pH,S.C.,etc.)

Sample taken 0 9:09

Groundwater Sampling

Field Data Sheet

Project Sullivan's Ledge Location New Bedford	Date_3-18-03
Water Level In MP Casing: (start) 32 84 (and) 12 Start Time 9:30	
Sampler Probe Preparation - See Sampling Plan Collection Bottle Preparation	1 - See Sampling Plan

_				ction	Checks		Position Sampler			Sar	mple (Collectio	n Che	ecks			
Run Vo.	Activate Shoe	Close Valve	Check Vacuum	Open Valve	Evacuate Container		 	Pressure in MP	Activate Shoe	Pressure in Zone ()	Open Valve	Final Zone Pressure	Close Valve	I	Pressure in MP	Volume Retrieved	Comments
l		√		1	7	J	(99,)	30.10	1	35.08	X	34.94	×	×	30.05	.254	
_																	
		•										•					
					2 Ha					·			·				Total Volume_0.25 (

Field Determinations (Appearance, pH,S.C.,etc.)

Sampled 8 9:35

Groundwater Sampling

Field Data Sheet

Project Sullivan's Ledge Location New Bedford	Date 3/18/03
Monitoring Well No. ECJ-1 Sampling Zone No. 72 Start Time 11:00 Water Level In MP Casing: (start) 32-86 (end) 32-90 Technicians	Fnd Time 11:30
Sampler Probe Preparation - See Sampling Plan Collection Bottle Preparation	CLM/WF5

·	L.			ction	Checks		Position Sampler		·	Sai	nple (Collectio	n Che	ecks			1
Run No.	Activate Shoe	Close Valve	Check Vacuum	Open Valve	Evacuate Container		Locate port release arm land probe	Pressure in MP ()	Activate Shoe	Pressure in Zone ()	Open Valve	Final Zone Pressure	Close Valve		Pressure in MP	Volume Retrieved	Comments
	7			J	/	J	(74)	34.20	J	34.02	/	34.00	7	7	34.21	252	
	4.																
_																	
								-									
																-	Total
ld D	etermin	etions	/Appa==		DHSC 6								İ				Volume 0.25 L

Sample taken 0 11:15

Groundwater Sampling Field Data Sheet

Project Sullivan's hedge location No	us Bedford		7/16/17
COUGIUM CO	w Beaporal	Date	3/18/03
Water Level In MP Casing: (start) 32.40 Sampler Probe Preparation - See Sampling Plan	o. 122 Start Time_	Find Time	e_11:30
Sampler Probe Preparation - See Sampling Plan	(end) <u> </u>	inicians (LM/u	/FS
Plan	Collection Bottle Pr	reparation - See San	nnling Plan

Run No.			ce Fun	ction	Checks		Position Sampler	Sample Collection Chacks									
	Activate Shoe	Close Valve	Check Vacuum	Open Valve	Evacuate Container		Locale port release arm land probe		Activate Shoe	Pressure in Zone ()	Open Valve	Final Zone Pressure	Close Valve		Pressure in MP	Volume Retrieved	Comments
1	~	/	V	V	V		(126)	56.00	~	68.10	1/				()	()	
а	V	~		~	V	V		56,00		5 547	/	55.39	X.	×	56.a	.251	NOTION W L'!
			,														
_																*	
																	<u> </u>
					24.50												Total Volume 0.25 Lit

terminations (Appearance, pH,S.C.,etc.)

MXSAMPLE2.sam

Page 5 of 6

Groundwater Sampling

Field Data Sheet

Project Sullivan's Ledge. Location New	w Bedford	Date3//8/03
Monitoring Well No. ECJ- Sampling Zone No. Water Level In MP Casing: (start) 33.48 (e		End Time 12:46
Sampler Probe Preparation - See Sampling Plan	Collection Bottle Preparation	- See Sampling Plan

Run No.				ction	Checks	Position Sampler	Sample Collection Checks									
	Activate Shoe	Close Valve	Check Vacuum		Evacuate Container	Locate port	Pressure in MP ()	Activate Shoe	Pressure in Zone ()	Open Valve	Final Zone Pressure	Close Valve	ł	Pressure in MP	Volume Retrieved	Comments
-	/					(151)	66.82	1	46.36	7	66.29	×	X ·	66.81	.25L	
		*.:														
																Total Volume (3. 25 6

Field Determinations (Appearance, pH,S.C.,etc.)

Field Data Sheet

Project Sulivan's bedse Location New Bodfor	Date 3/18107
Water Level In MP Casing: (start) 33,70 (end) >3.77 Technicians	cem/wes
Sampler Probe Preparation - See Sampling Plan Collection Bottle Preparation	- See Sampling Plan

j 	} ·			ction	Checks		Position Sampler										
Run No.	Activate Shoe	Close Valve	Check Vacuum	ı	Evacuate Container		Locate port release arm land probe	in MP	Activate Shoe	Pressure In Zone ()	Open Valve	Final Zone Pressure ()	Close	ł	Pressure in MP	Volume Retrieved	Comments
1	<i>J</i>	(~	√	(સ્૧ા)	118.99	V	129.30	V	129.02	V	V	118.98	.25	
					·												
							· · · · · · · · · · · · · · · · · · ·										
			· · ·														
\dashv																	
\neg											-		-				
\dashv											/						
						İ									ĺ		Total Volume <u>0.25 C</u>

Field Determinations (Appearance, pH,S.C.,etc.)

Sample taken @ 1300

Field Data Sheet

Project Sullivan's hedge Location New Bedlend	Date_3-17-03
Water Level In MP Casing: (start) 14 90 (and) (Cas)	End Time 12:3 2
Sampler Probe Preparation - See Sampling Plan Collection Bottle Preparation	n - See Sampling Plan

_	ł			ction	Checks		Position Sampler			Sar	nple (Collectio	n Che	ecks		· • • • • • • • • • • • • • • • • • • •	
Run No.	Activate Shoe	Close Valve	Check Vacuum	Open Valve	Evacuate Container			Pressure in MP ()	Activate Shoe	Pressure in Zone ()	Open Valve	Final Zone Pressure	Close Valve	Retract Shoe	Pressure in MP	Volume Retrieved	Comments
	1	\	J	7	>	J	('fu)	30.08	J	33.40	/	33.37	J	J :	30.01	0.500	۷.
									· · · · · · · · · · · · · · · · · · ·	<u> </u>			 				
						· ·											
		:															
-																	
1																	
					nH S C e		·										Total Volume_0.54

Field Data Sheet

Project Sullivans hedge Location New Manitoring Wall No. 5000000000000000000000000000000000000	Ball 1	_
World ing Well No. EQ Z Sampling Zone No. 9	2 Short Time	Date_3-17-03
Water Level In MP Casing: (start) 15.6 (end)	15.15 Tark Time 13.00	End Time 13:20
	Technicians	CLM
t and sampling than	Collection Bottle Preparation	- See Sampling Plan

_	1			ction	Checks		Position Sampler			Sar	nple (Collectio	n Che	ecks	·		
Run No.	Activate Shoe	Close Valve	Check Vacuum		Evacuate Container		Locate port release arm land probe	Pressure	Activate Shoe	Pressure in Zone ()	Open Valve	Final Zone Pressure	Ciose	Retract Shoe	Pressure in MP	Volume Retrieved	Comments
1	×	ĸ	×	X	*	X	(82)	45.28	×	49.07	X	48.69	X	X	45.24	51	
								,									
-																	
_																	
\dashv																	
			(455555														Total Volume 0.5はん

Field Determinations (Appearance, pH,S.C.,etc.)

Sample taken o 13:15

Field Data Sheet

Project Sullivants Ledge Location New Bedford	
Monitoring Well No CCT-O Sending Tem Deal and	Date_3-17-03
Monitoring Well No. CCJ - Sampling Zone No. 117 Start Water Level In MP Casing: (start) 15.16 (end) 15.13	Time 13:30 End Time 13:50
Sampler Probe Preparation See See (elia) 17. (3	lechnicians CLM
Collection E	Bottle Preparation - See Sampling Plan

D	L_				Checks		Position Sampler										
Run No.	Activate Shoe	Valve	Check Vacuum	Valve	Evacuate Container		Locate port release arm land probe	Pressure in MP ()	Activate Shoe	Pressure in Zone ()	Open Valve	Final Zone Pressure	Close Valve	•	Pressure in MP	Volume Retrieved	Comments
	メ	×	X	×	X	×	(117)	59.73	×	63.85	′ x	6384	X	Х	CO 77	00	
							<u></u>			<i>(27.6)</i>		Ψ > B (59.73	.25L	
																 -	
					DHSC 6												Total Volume ().25

Field Determinations (Appearance, pH,S.C.,etc.)

Sample taken 0 13:45

Field Data Sheet

Project Sullivan's hedge Location New Bedford	Date3/17/03
Monitoring Well No. <u>ECT -2</u> Sampling Zone No. <u>152</u> Start Time <u>14:00</u> Water Level In MP Casing: (start) <u>15.15</u> (end) <u>15.13</u> Technicians	
Sampler Probe Preparation - See Sampling Plan Collection Bottle Preparation	- See Sampling Plan

_	:			ction	Checks		Position Sampler										
Run No.	Activate Shoe	Close Valve	Check Vacuum	Open Valve	Evacuate Container		Locate port release arm land probe		Activate Shoe	Pressure in Zone ()	Open Valve	Final Zone Pressure	Close Valve	Retract Shoe	Pressure In MP	Volume Retrieved	Comments
ţ	ኦ	入	X	⊌	1	_	(157)	74.18	×	78.80	Х	7808	x	X	74.19	.252	
-																	
																-	
																1	Total Volume_0.25 U

Field Determinations (Appearance, pH,S.C.,etc.)

Field Data Sheet

Project Sullivan's hodge Location New Bedford	
Monitoring Well No FCT-2 Compliant	Date3/17/03
Monitoring Well No. ECT-2 Sampling Zone No. 187 Start Time 14:30 Water Level In MP Casing: (start) 16 MM 15 (card) 15	
Sampler Probe Proporation Sampler Probability Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probability Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Proporation Sampler Probe Probe Probe Proporation Sampler Probe Prob	CLM
Sampler Probe Preparation - See Sampling Plan Collection Bottle Preparation	- See Sampling Plan

D			ce Fun	ction	Checks		Position Sampler		<u> </u>								
Run No.	Activate Shoe	Valve	Check Vacuum		Evacuate Container		Locate port release arm land probe	Pressure in MP ()	Activate Shoe	Pressure in Zone ()	Open Valve	Final Zone Pressure ()	Close Valve	Retract Shoe	Pressure in MP	Volume Retrieved	Comments
	×	X	×	入	×	X	(187)	88.05	×	92.53	x	91.70	X	K	88.06	.252	
\dashv																	
-																	
			(Appear														Total Volume 0.25

Field Determinations (Appearance, pH,S.C.,etc.)

Sample taken 0 14:40

Appendix D

Spring 2003 Data Validation Report

Sullivan's Ledge Superfund Site Ground Water Data Validation Spring 2003 Round

Sullivan's Ledge Project Management Committee

June 2003

REPORT

Sullivan's Ledge Superfund Site Ground Water Data Validation Spring Round

> Sullivan's Ledge Project Management Committee

> > James R. Heckathorne, P.E. Vice President

June 2003

Contents

	List of Tablesi
	1. Introduction
	2. Analytical methods 3
	3. Data validation protocols 5
	4. Data quality evaluation 9 4.1. Volatile organic analyses 9 4.2. PCB analyses 10 4.3. Metal analyses 11
•	5. Data usability 13
List of Tables	2.1 Analytical methods
List of Appendices	

Validated results

1. Introduction

Data validation was performed for the ground water samples and ground water plant treatment influent samples collected from the Sullivan's Ledge Site in New Bedford, Massachusetts from March 17 through 19, 2003. Mabbett & Associates (M&A) performed sample collection activities. Samples were validated for selected volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and selected metals.

1.1. General considerations

Validation is a process of determining the suitability of a measurement system for providing useful analytical data. Although the term is frequently used in discussing analytical methods, it applies to all aspects of the process and especially to the samples, their measurement, and the actual data generated. Data validation was preformed in accordance with the applicable quality control outlined in the following documents:

- Field Sampling Plan (FSP) and Quality Assurance Project and Quality Assurance Project Plan (QAPP) First Operable Unit, Sullivan's Ledge Site, New Bedford, Massachusetts (O'Brien & Gere, January 2000) as modified by M&A's letter dated March 14, 2001, Alpha Analytical Laboratory Quality Manual (Alpha Analytical, October 2000), and by O'Brien & Gere's letter dated February 11, 2002 as modified by letter dated June 5, 2002.
- Test Methods for Evaluating Solid Wastes: Physical and Chemical Methods, SW-846, Final Update III, (USEPA, December 1996).
- Region I USEPA-New England (NE) Data Validation Functional Guidelines for Evaluating Environmental Analyses, Part II, Volatile/Semivolatile Data Validation Functional Guidelines (USEPA Region I, December 1996).
- USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluation of Organic and Inorganic Analyses (USEPA Region I, November 1988 and February 1989).

 USEPA Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A), 540/1-89/002 (USEPA, revised 1992).

The following sections of this document address distinct aspects of the validation process. Section 2 lists the analytical methodology employed in sample analysis. Section 3 lists the data quality assurance/quality control (QA/QC) protocols used to validate the sample data. Specific QA/QC excursions and qualifications performed on the sample data are discussed in Section 4. Data usability with respect to the intended purposes of the data is discussed in Section 5.

2. Analytical methods

Samples were analyzed by Alpha Analytical Laboratories utilizing the USEPA methods presented in Test Methods for Evaluating Solid Waste (USEPA, December 1996) shown in Table 2.1.

Table 2.1 Analytical methods.

Parameter	Analytical Method
VOCs (12 target)	8260B
PCBs (6 target)	8082
Metals (8 target)	6010B

Source: O'Brien & Gere Engineers, Inc.

Analytical results are presented in Appendix A. The letters found immediately to the right of individual sample results serve to qualify the sample data. When the data validation process identified more than one quality control deficiency, the qualifier added to the sample result represents the cumulative effect of the individual QC excursions. Consistent with the listed guidance document, the following qualifiers may be used during the data validation:

- U Indicates that the compound was analyzed for, but was not detected. The quantitation limit is presented and adjusted for dilution. This qualifier is also used when the quantitation limit is raised due to presence of blank contamination.
- J Indicates that the detected sample result should be considered approximate. This qualifier is used when the data validation process identifies a deficiency in the data generation process.
- UJ Indicates that the detection limit for the analyte in this sample should be considered approximate. This qualifier is used when the data validation process identifies a deficiency in the data generation process.
- R Indicates that the previously reported detection limit or sample result was rejected due to a major deficiency in the data generation procedure. The data should not be used for qualitative or quantitative purposes.

3. Data validation protocols

Quality control data were evaluated based on accuracy and precision criteria specified in Section 3.3 of the site specific FSP and QAPP and Alpha's QM. The following are method specific QA/QC parameters used in the validation of sample data generated for this investigation:

Volatile analyses

- Holding times and sample preservation
- GC/MS tuning criteria
- Initial and continuing calibration
- Blank analysis
- Surrogate recovery
- Internal standard performance
- Matrix spike/matrix spike duplicate (MS/MSD) analysis
- Field duplicate analysis
- Laboratory control sample (LCS) analysis
- System performance
- Target compound identification, quantitation, and reporting limits
- Documentation completeness
- Overall data assessment

PCB analyses

- Holding times and sample preservation
- Initial and continuing calibration
- Blank analysis
- Surrogate recovery and retention time shift
- Internal standard performance
- MS/MSD analysis
- Field duplicate analysis
- LCS analysis
- System performance
- Target compound identification, quantitation, and reporting limits
- Documentation completeness
- Overall data assessment

Metals analyses

- Holding times and sample preservation
- Initial and continuing calibration
- Interference check standard analysis
- Blank analysis
- Matrix spike (MS) analysis
- Laboratory duplicate analysis
- Serial dilution analysis
- Field duplicate analysis
- LCS analysis
- Analyte quantitation and reporting limits
- Documentation completeness
- Overall data assessment

In accordance with the QAPP, laboratory control limits were used to assess MS/MSD, LCS, surrogate, and laboratory duplicate data. Field duplicate data were assessed based on requirements specified in the QAPP. Based on guidance provided in EPA Region I's validation guidelines (USEPA Region I, November 1988, February 1989, December 1996), analytical data were qualified in the following manner when laboratory control limits were not met:

- If percent recoveries were less than laboratory control limits but greater than ten percent, non-detected and detected results were qualified as approximate (UJ, J).
- If percent recoveries were greater than laboratory control limits, detected results were qualified as approximate (J).
- If percent recoveries were less than ten percent, detected results were qualified as approximate (J) and non-detected results were qualified as rejected (R).
- If relative percent differences (RPDs) for MSDs and laboratory duplicates were outside of laboratory control limits, detected results greater than the laboratory reporting limit were qualified as approximate (J).
- If RPDs were >50% (>± 2xMRL for results <5xMRL) for field duplicates, detected results greater than the MRL were qualified as approximate (J).

It should be noted that qualification of data for MS/MSD analyses was performed only when both MS and MSD percent recoveries were outside of laboratory control limits. Qualification of data was not performed if MS/MSD or surrogate recoveries were outside of laboratory control limits due to sample dilution. Additionally, for MS/MSD and field duplicate excursions for organic analyses, qualification of data was limited

for the unspiked sample or the field duplicate pair unless otherwise stated.

Data Validation

4. Data quality evaluation

This section summarizes the QA/QC parameters that met validation criteria and describes qualifications applied to sample data when QA/QC criteria were not met. Samples that required qualification are identified in the following sections by the sample location documented on the field chain of custody record. Equipment and trip blank data were used to assess contamination that may have been introduced during field sampling and sample shipment and were not qualified with respect to QA/QC excursions.

Field chain of custody records were accurate and complete. Samples were received on ice and cooler temperatures met requirements.

A total of eighteen ground water locations were sampled. In addition, seven ground water treatment influent samples were collected. Field duplicate (ten percent), MS/MSD (five percent), equipment blanks (EB) and trip blanks (TB) were collected at the frequency specified in Section 2.6.6 of the site specific FSP and QAPP. Dedicated sampling equipment was used to collect the ground water samples with the exception of the Westbay wells. An equipment blank was collected from the Westbay sampling equipment as required. Table 4.1 summarizes the field QC samples that were collected.

Table 4.1. Field QC sample Collection.

Field Duplicate IDs	MS/MSD ID	Equipment Blank	Trip Blanks
DUP1 = ECJ-2-47 DUP2= BEI-2	BEI-3	3/18/03	3/18/03
DUPZ- BEI-Z	GCA-1 (VOCs only)		3/18/03 3/19/03

Table Notes:

Trip blanks were identified by date received. A trip blank was present in each sample cooler containing volatile organic samples as required.

Source: O'Brien & Gere Engineers, Inc.

4.1. Volatile organic analyses

Nineteen ground water, seven ground water treatment plant influent, and associated QC samples were analyzed and validated for the following selected VOCs: chlorobenzene, benzene, toluene, ethylbenzene, vinyl chloride, trans-1,2-dichloroethene, trichloroethene, 1,4-dichlorobenzene, m/p-xylenes, o-xylene, cis-1,2-dichloroethene, and naphthalene.

The following QA/QC parameters met validation criteria or did not result in qualification of data:

- Holding times and sample preservation
- GC/MS tuning criteria
- Initial and continuing calibration
- Blank analysis
- Surrogate recovery
- Internal standard performance
- MS/MSD analysis
- LCS analysis
- System performance
- Target compound identification and quantitation
- Documentation completeness

Field duplicate analysis. Precision criteria was not met for vinyl chloride (RPD 39%) in field duplicate pairs ECJ-2-47 and DUP1(ECJ-2-47). Detected results for vinyl chloride were qualified as approximate in samples ECJ-2-47 and DUP1(ECJ-2-47).

Target compound identification and reporting limits. Target compound identification was performed in accordance with method requirements. Elevated reporting limits were reported for volatile analyses in several ground water samples based on sample dilutions performed prior to analysis. Dilutions were performed by the laboratory based on historical data and are documented on the data validation summary tables. Sample dilutions were performed at the appropriate levels.

Overall data assessment. Volatile analyses and their respective QC procedures were performed in accordance with analytical method and QAPP requirements. Volatile data are useable for qualitative and quantitative purposes. Data were qualified as approximate for vinyl chloride in samples ECJ-2-47 and DUP1(ECJ-2-47) based on a minor excursion from field duplicate requirements.

4.2. PCB analyses

Seven ground water, seven ground water treatment plant influent, and associated QC samples were analyzed and validated for PCBs. The following QA/QC parameters met criteria or did not result in qualification of data:

- Holding times and sample preservation
- Initial and continuing calibration
- Blank analysis
- Surrogate recovery and retention time shift
- Internal standard analysis

- MS/MSD analysis
- Field duplicate analysis
- LCS analysis
- System performance
- Documentation completeness

Target compound identification, quantitation, and reporting limits.

Based on 100% review of the data, the laboratory performed identification in accordance with method requirements. For the majority of samples in which PCBs were detected, the laboratory documented that the PCB Aroclors that were identified exhibited an altered pattern. Samples that exhibited altered PCB patterns have been identified in data validation summary tables, included as Appendix A. Based on review of the raw data, peaks were present within retention time windows established for the identified PCB Arcolors on both primary and confirmation columns utilized by the laboratory. The pattern did not match with respect to peak ratios. The Aroclors that were identified by the laboratory represent the closest match. Therefore, additional qualification of data with respect to PCB Aroclor identification was not required.

The internal standard method was utilized for quantitation for primary and confirmation analyses. Based on review of ten percent of the data, PCB aroclor quantitation was performed in accordance with method requirements. PCB concentrations were above the linear calibration range for samples OBG-1, OBG-2, BEI-1, MW-24, and MW-2. These samples were diluted and reanalyzed and the results were reported from the diluted run as appropriate. Percent difference (%D<40%) requirements for two column results were met.

Overall data assessment. PCB analyses and QA/QC procedures were performed in accordance with analytical method and QAPP requirements. PCB data are useable for qualitative and quantitative purposes without further qualification.

4.3. Metal analyses

Seven treatment plant influent and associated QC samples were analyzed and validated for the following selected metals: aluminum, barium, chromium, copper, iron, lead, vanadium, and zinc. The following QA/QC parameters met criteria or did not result in qualification of data:

- Holding times and sample preservation
- Initial and continuing calibration
- Blank analysis
- Interference check standard analysis
- Matrix spike analysis
- Laboratory duplicate analysis
- Serial dilution analysis

- LCS analysis
- Field duplicate analysis
- Analyte quantitation and reporting limits
- Documentation completeness

Overall data assessment. The laboratory performed metal analyses and QA/QC procedures in accordance with analytical method and QAPP requirements. Metals data are usable for qualitative and quantitative purposes without further qualification.

5. Data usability

Analytical data were validated for samples collected from the Sullivan's Ledge Site in New Bedford, Massachusetts. Ground water samples and ground water treatment plant influent samples were validated for selected volatile organic compounds, PCBs and selected metals based on accuracy and precision criteria specified in documents referenced in Section 1. When excursions were observed from QA/QC requirements, the analytical data were qualified based on guidance provided in the USEPA Region I validation guidelines (USEPA Region I, November 1988, February 1989, and December 1996).

[Minor deficiencies in the data generation process resulted in approximation of sample data clarified.] Approximation of a data point indicates uncertainty in the reported concentration of the analyte, but not its assigned identity. The conservative assumptions used in the development of conclusions based on the analytical data verifies that approximated analytical data adheres to the project data quality objectives. This approach to the use of analytical data is consistent with the guidance presented in the USEPA Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A), 540/1-89/002 (USEPA, December 1992).

This section summarizes the adherence of the analytical data to the data quality objectives (DQOs) established in the QAPP for precision, accuracy, representativeness, comparability, completeness, and sensitivity. A detailed discussion of the analytes and samples that were qualified is presented in Section 4. Summary tables of validated sample results with data validation qualifiers have been provided in Appendix A of this report.

Data quality objectives were evaluated using percent usability, defined as the percentage of sample results that are usable for qualitative and quantitative purposes.

Precision was assessed from laboratory MSD and field duplicate analyses. Data usability with respect to precision was calculated as 100%. Detected results were qualified as approximate for vinyl chloride in field duplicate samples collected from ECJ-2-47.

Accuracy was assessed from GC/MS tuning, calibration, surrogate recovery, internal standard performance MS/MSD, and LCS data. Data usability with respect to accuracy was calculated as 100%.

Representativeness was assessed from holding times, sample preservation, blank analysis, target compound identification and quantitation, and sampling and analytical methodologies used. Data usability with respect to representativeness was 100%.

Comparability is a qualitative measure, therefore, usability calculations were not performed. Comparability requirements were met since standard analytical methods, reporting units, reference materials, and data deliverables were utilized by the laboratory.

Sensitivity requirements were met overall. Laboratory reporting limits were elevated for volatile organic compounds in the majority of samples based on the laboratory dilutions performed to obtain concentrations within the linear calibration range. Sample dilutions were performed in accordance with method requirements and were based on historical data.

Data completeness was calculated as 100%, exceeding the 95% requirement established in the QAPP.

Validated Results

Table 1 Sullivan's Ledge Superfund Site Ground Water Samples Method 8260B Volatile Organic Compound Data

Compound	Sample ID SDG ID Dilution Factor Sample Date Units Matrix	BEI-1 L0302418 500 03/18/03 ug/L WATER	BEI-2 L0302418 200 03/18/03 ug/L WATER	BEI-2 Dup L0302418 100 03/18/03 ug/L WATER	BEI-3 L0302418 1 and 67 03/18/03 ug/L WATER	OBG-1 L0302418 500 03/18/03 ug/L WATER	OBG-2 L0302418 100 03/18/03 ug/L WATER	OBG-3 L0302484 50 03/19/03 ug/L WATER	Collection Trench L0302418 1 03/18/03 ug/L WATER	ECJ-1-37 L0302418 I 03/18/03 ug/L WATER	ECJ-1-62 L0302418 20 03/18/03 ug/L WATER
1,4-Dichlorobenzene		1200 U	500 U	250 U	2.5 U	1200 U	250 U	120 U	5.4	2.5 U	50 U
Benzene		250 U	100 U	85	10	330	360	39	62	1.7	10 U
Chlorobenzene		250 U	110	100	2.5	250 U	240	7 0	45	4,6	10 U
Ethylbenzene		1300	170	180	56	840	150	25 U	1.3	6	10 U
Naphthalene		1200 U	500 U	250 U	2.5 U	1200 ປັ	250 U	120 U	12	2.5 U	50 U
Toluene		840	150 U	75 U	8.8	990	120	38 U	0.75 U	3.9	15 U
Trichloroethene		8400	100 U	50 U	970	380	56	160	0.5 U	0.5 U	10 U
Vinyl chloride		B30	1100	1100	170	840	500	120	ΙU	2.1	550
cis-1,2-Dichloroethene		22000	5900	5900	4200	18000	4800	1500	1.7	2	800
o-Xylene		250 U	100 U	50 U	0.5 U	250 U	50 U	25 U	1	0.5 U	1010
m,p-Xylenes		250 U	100 U	50 U	0.5 U	250 U	50 U	25 U	2.8	0.5 U	10 U
trans-1,2-Dichloroethene		380 U	150 U	75 U	19	380 U	75 U	38 U	0.75 U	0.75 U	15 Ü

NOTES:

U - not detected, J - estimated value, R - unusable, — - not analyzed.

Dup - references blind field duplicate sample that was collected. Lab Dup - laboratory duplicate analyses conducted.

Date Printed: 05/28/03 09:43:19
DBF File: Q:\5509_SULLIVAN\28602_SUPERFUND\TEMPDATA.DBF
FXP File: Q:\5509_SULLIVAN\28602_SUPERFUND\TABLEPR.FXP

Page 1 of 3

File Number: 5509.28602

Table 1 Sullivan's Ledge Superfund Site Ground Water Samples Method 8260B Volatile Organic Compound Data

compound	Sample ID SDG ID Dilution Factor Sample Date Units Matrix	ECJ-1-72 L0302418 500 03/18/2003 ug/L WATER	ECJ-1-122 L0302418 100 03/18/2003 ug/L WATER	ECJ-1-148 L0302418 1000 03/18/2003 ug/L WATER	ECJ-2-47 L0302418 40 03/17/2003 ug/L WATER	ECJ-2-47 Dup L0302418 20 03/17/2003 ug/L WATER	ECJ-2-82 L0302418 500 03/17/2003 ug/L WATER	ECJ-2-117 L0302418 200 03/17/2003 ug/L WATER	ECJ-2-152 L0302418 500 03/17/2003 ug/L WATER	ECJ-2-187 L0302418 200 03/17/2003 ug/L WATER	GCA-I L0302484 2 03/19/2003 ug/L WATER
1,4-Dichlorobenzene		1200 U	250 U	2500 U	100 U	50 U	1200 U	500 U	1200 U	500 U	9.9
Benzene		250 U	340	500 U	20 U	10 U	250 U	110	250 U	100 U	110
Chlorobenzene		250 U	170	500 U	20 U	17	250 U	100 U	250 U	100 U	57
Ethylbenzene		1200	380	1500	20 U	10 U	1200	1700	1200	760	2.9
Naphthalene		1200 U	250 U	2500 U	100 U	50.U	1200 U	500 U	1200 U	500 U	6.8
Toluene		600	75 U	880	30 U	15 U	1200	1600	1900	850	1.6
Trichloroethene		250 U	50 U	500 U	20 U	12	250 U	100 U	250 U	100 U	1 U
Vinyl chloride		20000	1100	2800	490 J	730 J	12000	22000	23000	12000	17
cis-1,2-Dichloroethene		39000	4300	28000	1200	1400	250 U	10000	36000	11000	57
o-Xylene		250 U	50 U	500 U	20 U	10 U	250 U	190 U	250 U	100 U	2.3
m,p-Xylenes		250 U	50 U	500 U	. 20 U	10 U	250 U	100 U	250 U	100 U	4.6
trans-1,2-Dichloroethene		380 U	75 U	750 U	30 U	15 U	380 U	150 U	380 U	150 U	1.5 U

NOTES:

U - not detected, J - estimated value, R - unusable, — - not analyzed.

Dup - references blind field duplicate sample that was collected. Lab Dup - laboratory duplicate analyses conducted.

Page 2 of 3

File Number: 5509.28602

Table 1 Sullivan's Ledge Superfund Site **Ground Water Samples** Method 8260B Volatile Organic Compound Data

Compound	Sample ID SDG ID Dilution Factor Sample Date Units Matrix	MW-2 L0302484 10 03/18/03 ug/L WATER	MW-4 L0302418 10 03/18/03 ug/L WATER	MW-6 L0302418 100 03/17/03 ug/L WATER	MW-6A L0302418 l 03/17/03 ug/L WATER	MW-14 L0302484 4 03/19/03 ug/L WATER	MW-15 L0302418 2.5 03/18/03 ug/L WATER	MW-24 L0302418 100 03/18/03 ug/L WATER	Equipment Blank L0302418 1 03/18/03 ug/L WATER	Trip Blank L0302484 I 03/10/03 ug/L WATER	Trip Blank L0302418 1 03/10/03 ug/L WATER
1,4-Dichlorobenzene		50	25 U	250 U	2.5 U	10 U	6.4	250 U	2.5 U	2.5 U	2.5 U
Benzene		180	7.4	SO U	13	270	120	2100	0.5 U	0.5 U	0.5 U
Chlorobenzene		80	5 U	50 U	16	25	3.1	120	0,5 U	0.5 U	0.5 U
Ethylbenzene		5 U	5 U	50 U	0.5 U	2 U	1.20	50 U	0.5 U	0.5 U	0.5 U
Naphthalene	***************************************	25 U	25 U	250 U	2.5 U	17	11	250 U	2.5 U	2.5 U	2.5 U
Toluene		7.5 U	75 U	75 U	0.75 ป	3 U	1.9 U	75 U	0.75 U	0,75 U	0.75 U
Trichloroethene		290	440	50 U	0.5 U	2 U	1.2 U	1100	0.5 U	0.5 U	0.5 U
Vinyl chloride		170	75	1200	22	4 U	2.5 U	100 U	10	iU	1.0
cis-1,2-Dichloroethene		570	390	2800	20	2 U	1.2 U	320	0.5 U	0.5 U	0,5 U
o-Xylene		5:U	5 U	50 U	0.5 U	2 U	2.3	50 tJ	0.5 U	0.5 U	0.5 U
m,p-Xylenes		5 U	5 U	50 U	0.5 U	3.2	5.5	50 U	0.5 U	0,5 U	0.5 U
trans-1,2-Dichloroethene		8.9	75 U	75 Y	0.75 U	3 Ü	19 U	75 U	0.75 U	0 75 U	0.75 ป

NOTES:

U - not detected, J - estimated value, R - unusable, -- - not analyzed.

Dup - references blind field duplicate sample that was collected. Lab Dup - laboratory duplicate analyses conducted.

Page 3 of 3

Date Printed: 05/28/03 09:43:19
DBF File: Q:\5509_SULLIVAN\28602_SUPERFUND\TEMPDATA.DBF
FXP File: Q:\5509_SULLIVAN\28602_SUPERFUND\TABLEPR FXP

Table 2 Sullivan's Ledge Superfund Site Ground Water Samples Method 8082 PCB Data

	Sample ID SDG ID Dilution Factor - Sample Date	BEI-1 L0302418 1 and 2 03/18/2003	BEI-2 L0302418 1 03/18/2003	BEI-2 Dup L0302418 1 03/18/2003	BEI-3 L0302418 1 03/18/2003	OBG-1 L0302418 1 and 10 03/18/2003	OBG-2 L0302418 1 and 2 03/18/2003	OBG-3 L0302484 1 03/19/2003	Collection Trench L0302418 1 03/18/2003	MW-2 L0302484 1 and 2 03/18/2003	MW-4 L0302418 I 03/18/2003
Compound	Units Matrix	ug/L WATER	ug/L WATER	ug/L WATER	ug/L WATER	ug/L WATER	ug/L WATER	ug/L WATER	ug/L WATER	ug/L WATER	ug/L WATER
Aroclor 1221		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0,5 U
Aroclor 1232		0.5 U	0.5 U	05 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Aroclor 1242/1016 ~		6.95 •	1.62 •	1.51 •	0.5 U	11.8 •	5.79 •	0.5 U	1.34 *	4.28 *	0,5 U
Aroclor 1248		0.5 U	05U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Aroclor 1254		1.45 •	0.693 *	0,688 *	1.74 *	42.2	1.03 *	3.66	0.5 U	0.5 U	0.5 U
Aroclor 1260		0.5 U	05U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U

NOTES:

U - not detected, J - estimated value, R - unusable, — - not analyzed.

Dup - references blind field duplicate sample that was collected. Lab Dup - laboratory duplicate analyses conducted.

* - Altered PCB Aroclor.

1 of 2 Page

Table 2 Sullivan's Ledge Superfund Site Ground Water Samples Method 8082 PCB Data

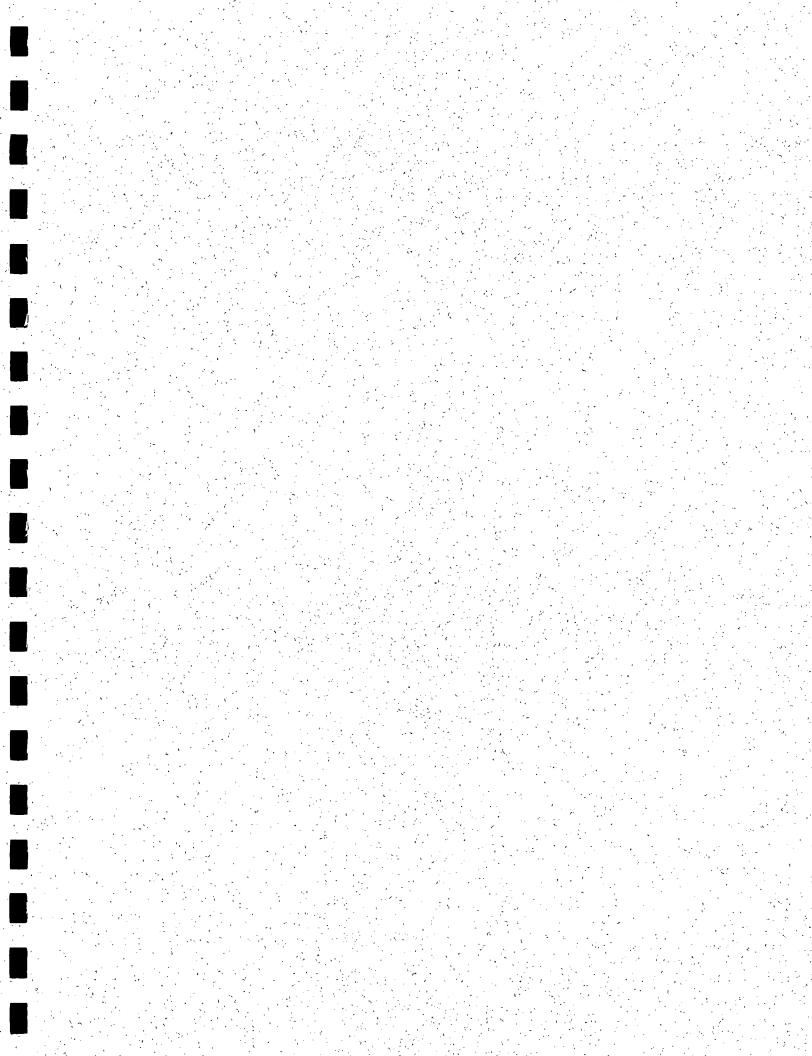
actor -	03/17/03 ug/L		MW-14 L0302484 I 03/19/03 ug/L	MW-15 L0302418 1 03/18/03 ug/L	MW-24 L0302418 1 and 10 03/18/03 ug/L							
	WATER		WATER	WATER	WATER							
annon our	0.5 U		0.5 U	0.5 U	0.5 U			-				*
	0.5 U		0.5 U	05U	0.5 U							
55505000000	0.5 U		0.5 U	1.39 *	26.1 *							
	0.5 U 0.5 U		0.5 U 0.5 U	0.5 U	0.5 U							
ANGERGOOD	0.5 U	38833333333333333333	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		
48666666	V. J U		vou	4 50	0.50							
										300000000000000000000000000000000000000	10.000000000000000000000000000000000000	
.000000000	*****************	444400000000000000000000000000000000000	100000000000000000000000000000000000000									
												330000000000000000000000000000000000000
~~~~~~~~												
									***************************************			
5000000000	straterannonanananan	000000000000000000000000000000000000000									******************************	
200000000000		000000000000000000000000000000000000000		000000000000000000000000000000000000000								
38888888	300000000000000000000000000000000000000		660000000000000000000000000000000000000			Hilionomos sassassassassassassassassassassassassa	500566000000000000000000000000000000000	500000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	Soft Soft Construction of Construction of Construction of Construction of Construction of Construction of Cons
989999999					, and the second							
8888888					***************************************		990000000000000000000000000000000000000	550000000000000000000000000000000000000	000000000000000000000000000000000000000	800000000000000000000000000000000000000	000000000000000000000	200000000000000000000000000000000000000
60000000000												
								656560006000000000000000000000000000000	000000000000000000000000000000000000000		950000000000000000000000000000000000000	888999999999999999
40000000000	0000000000000000000	200000000000000000000000000000000000000	90000000000000000000000000000000000000									
											300000000000000000000000000000000000000	000000000000000000000000000000000000000
2010000000	***********	xxxxxxxxxxx	****************	************************	000000000000000000000000000000000000000							
a a a servicio de de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la consta			**************************************	errangen en  ***************************************								
									www.cccccccccccccccccccccccccccccccccc			
6000000000			AMAGAAAA	*							· · · · · · · · · · · · · · · · · · ·	
e, R - un	unusable, —	- not analyzed	1.			e analyses conducted.						

Dup - references blind fie - Altered PCB Aroclor.

Page 2 of 2

File Number: 5509,28602




#### Table 3 Sullivan's Ledge Superfund Site Ground Water Samples Method 6010B/7470A Inorganic Data

Compound	Sample ID SDG ID Dilution Factor Sample Date Units Matrix	BEI-1 L0302418 1 03/18/03 mg/L WATER	BEI-2 L0302418 1 03/18/03 mg/L WATER	BEI-2 Dup L0302418 I 03/18/03 mg/L WATER	BEI-3 L0302418 l , , 03/18/03 mg/L WATER	OBG-1 L0302418 ! 03/18/03 mg/L WATER	OBG-2 L0302418 1 03/18/03 mg/L WATER	OBG-3 L0302484 1 03/19/03 mg/L WATER	Collection Trench L0302418 1 03/18/03 mg/L WATER	
Aluminum Barum Chromium Capper Iron Lend Vanadium		0.1 U 0.52 0.01 U 0.01 U 52 0.008 0.01 U	0.1 U 0.68 0.01 U 0.01 U 64 0.01	0.1 U 0.69 0.01 U 0.01 U 65 0.012 0.01 U	0.1 U · 0.13 0.01 U 0.01 U 2 0.005 U 0.01 U	0.1 U 1.2 0.01 U 0.01 U 46 0.007	0.1 U 1.6 0.01 U 0.01 U 72 0.012 0.01 U	0.1 U 0.73 0.01 U 0.01 U 84 0.005 U 0.01 U	0.15 0.78 0.01 0.01 U 75 0.017 0.01 U	
Zinc		605 U	6 05 U	0.05-U	a os ti	0.05 U	0.051	03	G 05 U	
							-			

Date Printed: 05/28/03 09:43:33
DBF File: Q\5509 SULLIVAN\28602_SUPERFUND\TEMPDATA.DBF
FXP File: Q\5509_SULLIVAN\28602_SUPERFUND\TABLEPR.FXP

1 of 1

Page





June 17, 2003

Mr. David O. Lederer Remedial Project Manager Environmental Protection Agency (HBO) Region 1 1 Congress Street, Suite 1100 Boston, MA 02114-2023

Re: Sullivan's Ledge Superfund Site

Quarterly Ground Water

Sampling Event – Spring 2003

File:

5509/28602 #2

Dear Dave:

Please find enclosed for your review the Quarterly Ground Water Sampling Event – Spring 2003. Please contact Jim Heckathorne or me if you have any questions concerning this document.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC

Judy A. Shanahan, PE Senior Project Engineer

I:\DIV71\Projects\5509\28602\2_corres\SpringLEDER.doc Attachment

cc:

S. Wood

E. Vaughn

S. Alfonse

P. Steinberg

E. Bertaut

D. Dwight

M. Wade

G. Swenson

J. Heckathorne